Advertisement

Journal of Mammalian Evolution

, Volume 7, Issue 3, pp 147–166 | Cite as

Molecular Phylogeny of the Chipmunk Genus Tamias Based on the Mitochondrial Cytochrome Oxidase Subunit II Gene

  • Antoinette J. Piaggio
  • Greg S. Spicer
Article

Abstract

Complete sequences of the mitochondrial cytochrome oxidase subunit II gene were used to construct a phylogeny for 21 of the 25 currently recognized chipmunk species. Phylogenetic analyses indicate that T. striatus (subgenus Tamias, eastern United States) and T. sibiricus (subgenus Eutamias, Asia) are distantly related to the other species (subgenus Neotamias), which constitute a western North American radiation. We discuss and compare our molecular phylogeny to previous taxonomies and present a suggested classification of the species groups for the subgenus Neotamias.

Tamias phylogenetics mitochondrial DNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

LITERATURE CITED

  1. Adams, D. R., and Sutton, D. A. (1968). A description of the baculum and os clitoris of Eutamias townsendii ochrogenys. J. Mammal. 49:764–769.Google Scholar
  2. Adkins, R. M., and Honeycutt, R. L. (1994). A molecular examination of archontan and chiropteran monophyly. In: Primates and Their Relatives in Phylogenetic Perspective, MacPhee, R. D. E. ed., pp. 227–249, Plenum Press, New York.Google Scholar
  3. Allen, J. A. (1891). A review of some of the North American ground squirrels of the genus Tamias. Bull. Amer. Mus. Nat. Hist. III:42–65.Google Scholar
  4. Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Boe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G. (1981). Sequence and organization of the human mitochondrial genome. Nature (London) 290:457–465.Google Scholar
  5. Baker, R. H. (1956). Mammals of Coahuila, Mexico. Univ. Kansas Publ., Mus. Nat. Hist. 9:125–335.Google Scholar
  6. Bergstrom, B. J., and Hoffmann, R. S. (1991). Distribution and diagnosis of three species of chipmunks (Tamias) in the front range of Colorado. Southwest. Nat. 36:14–28.Google Scholar
  7. Blakenship, D. J., and Bradley, G. L. (1984). Electrophoretic comparison of two southern California chipmunks (Tamias obscurus and Tamias merriami). So. Calif. Acad. Sci. 84:48–50.Google Scholar
  8. Bremer, K. (1988). The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42:795–803.Google Scholar
  9. Burgwardt, L. C., Jr. (1967). A comparison of certain members of the genus Eutamias by blood serum protein electrophoresis. Zoology, pp. 4799-B–4800-B.Google Scholar
  10. Burt, W. H. (1960). Bacula of North American mammals. Misc. Pub. Mus. Zoo. Univ. Michigan 113:1–76.Google Scholar
  11. Callahan, J. R. (1975). Status of the Peninsula chipmunk. J. Mammal. 56:226–269.Google Scholar
  12. Callahan, J. R. (1980). Taxonomic status of Eutamias bulleri. Southwest. Nat. 25:1–8.Google Scholar
  13. Conley, W. H. (1970). Geographic variation in the Least chipmunk Eutamias minimus, in New Mexico and eastern Arizona. J. Mammal. 51:695–702.Google Scholar
  14. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using bootstrap. Evolution 39:783–791.Google Scholar
  15. Felsenstein, J. (1993). PHYLIP: Phylogeny Inference Package (ver 3.5). University of Washington, Seattle.Google Scholar
  16. Fleharty, E. D. (1960). The status of the gray-necked chipmunk in New Mexico. J. Mammal. 41:235–242.Google Scholar
  17. Grinnell, J. (1915). Eutamias sonomae, a new chipmunk from the inner northern coast belt of California. Univ. Calif. Pub. Zool. 12:321–325.Google Scholar
  18. Hall, E. R. (1981). The Mammals of North America, Vol. 1, 2nd edn., John Wiley and Sons, New York.Google Scholar
  19. Hardy, R. (1945). The taxonomic status of some chipmunks of the genus Eutamias in southwestern Utah. Proc. Biol. Soc. Wash. 58:85–87.Google Scholar
  20. Hasegawa, M., Kishino, H., and Yano, T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22:160–174.Google Scholar
  21. Hoffmann, R. S., Anderson, C. G., Thorington, R. W. J., and Heaney, L. R. (1993). Family Sciuridae. In Mammal Species of the World, D. E. Wilson and D. M. Reeder, eds., pp. 419–465. Smithsonian Institution Press, Washington, D. C.Google Scholar
  22. Hoffmeister, D. F., and Ellis, S. L. (1979). Geographic variation in Eutamias quadrivittatus with comments on the taxonomy of other Arizonan chipmunks. Southwest. Nat. 24:655–666.Google Scholar
  23. Honeycutt, R. L., Nedbal, M. A., Adkins, R. M., and Janecek, L. L. (1995). Mammalian mitochondrial DNA evolution: A comparison of the cytochrome b and cytochrome c oxidase II genes. J. Mol. Evol. 40:260–272.Google Scholar
  24. Howell, A. H. (1922). Diagnoses of seven new chipmunks of the genus Eutamias, with a list of the American species. J. Mammal. 3:178–185.Google Scholar
  25. Howell, A. H. (1929). Revision of the American Chipmunks, No. 52. U.S. Department of Agriculture, Bureau of Biological Survey, Washington, D.C.Google Scholar
  26. Howell, A. H. (1938). Revision of the North American Ground Squirrels, No. 56. U.S. Department of Agriculture, Bureau of Biological Survey, Washington, D.C.Google Scholar
  27. Irwin, D. M., Kocher, T. D., and Wilson, A. C. (1991). Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 32:128–144.Google Scholar
  28. Johnson, D. H. (1943). Systematic review of the chipmunks (genus: Eutamias) of California. Univ. Calif. Publ. Zool. 48:63–148.Google Scholar
  29. Kain, D. E. (1985). The Systematic Status of Eutamias ochrogenys and Eutamias senex (Rodentia: Sciuridae). Master's thesis. Humboldt State University.Google Scholar
  30. Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111–120.Google Scholar
  31. Kusukawa, N., Yemori, T., Arada, K., and Kato, I. (1990). Rapid and reliable protocol for direct sequencing of material amplified by the polymerase chain reaction. Biotechniques 9:66–72.Google Scholar
  32. Layne, J. N. (1954). The os clitoridis of some North American Sciuridae. J. Mammal. 35:357–366.Google Scholar
  33. Levenson, H., and Hoffmann, R. S. (1984). Systematic relationships among taxa in the Townsend chipmunk group. Southwest. Nat. 29:157–168.Google Scholar
  34. Levenson, H., Hoffmann, R. S., Nadler, C. F., Deutsch, L., and Freeman, S. D. (1985). Systematics of the Holarctic chipmunk (Tamias). J. Mammal. 66:219–242.Google Scholar
  35. Long, C. A., and Cronkite, D. (1970). Taxonomy and ecology of sibling chipmunks in central Colorado. Southwest. Nat. 14:283–291.Google Scholar
  36. Moore, J. C. (1959). Relationships among the living squirrels of the Sciurinae. Bull. Am. Mus. Nat. Hist. 118:159–206.Google Scholar
  37. Nadler, C. F. (1964). Contributions of chromosomal analysis to the systematics of North American chipmunks. Amer. Midl. Nat. 72:298–312.Google Scholar
  38. Nadler, C. F., and Block, M. H. (1962). The chromosomes of some North American chipmunks (Sciuridae) belonging to the genera Tamias and Eutamias. Chromosoma, (Berlin) 13:1–15.Google Scholar
  39. Nadler, C. F., Hoffmann, R. S., and Lay, D. M. (1969). Chromosomes of the Asian chipmunk Eutamias sibiricus Laxmann (Rodentia: Sciuridae). Experientia 25:868–869.Google Scholar
  40. Nadler, C. F., Hoffmann, R. S., Honacki, J. H., and Pozin, D. (1977). Chromosomal evolution in chipmunks, with special emphasis on A and B karyotypes of the subgenus Neotamias. Amer. Midl. Nat. 98:343–353.Google Scholar
  41. Nadler, C. F., Hoffmann, R. S., and Levenson, H. (1985). Biochemical and morphological relationships among Holarctic chipmunks. Acta Zool. Fenn. 170:19–23.Google Scholar
  42. Patterson, B. D. (1980). A new subspecies of Eutamias quadrivittatus (Rodentia: Sciuridae) from the Organ Mountains of New Mexico. J. Mammal. 61:455–464.Google Scholar
  43. Patterson, B. D. (1981). Morphological shifts of some isolated populations of Eutamias (Rodentia: Sciuridae) in different congeneric assemblages. Evolution 35:53–66.Google Scholar
  44. Patterson, B. D. (1982). Pleistocene vicariance, montane islands, and the evolutionary divergence of some chipmunks (Genus Eutamias). J. Mammal. 63:387–398.Google Scholar
  45. Patterson, B. D. (1984). Geographic variation and taxonomy of Colorado and Hopi chipmunks (Genus Eutamias). J. Mammal. 65:442–456.Google Scholar
  46. Patterson, B. D., and Thaeler, C. S. (1982). The mammalian baculum: hypotheses on the nature of bacular variability. J. Mammal. 63:1–15.Google Scholar
  47. Pena, N. T., and Kocher, T. D. (1995). Patterns of nucleotide composition at four fold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 41:353–358.Google Scholar
  48. Rohlf, F. J. (1982). Consensus indices for comparing classifications. Math. Biosci. 59:131–144.Google Scholar
  49. Sorenson, M. D. (1999). TreeRot version 2. Boston University, Boston, MA.Google Scholar
  50. Spicer, G. S. (1995). Phylogenetic utility of the mitochondrial cytochrome oxidase gene: molecular evolution of the Drosophila buzzatii species complex. J. Mol. Evol. 41:749–759.Google Scholar
  51. Stanley, W. T. (1991). An Analysis of the Biogeographic Relationships of Four Populations of the Uinta Chipmunk (Eutamias umbrinus) Using Phallic Morphology. Master's Thesis, Humboldt State University, Arcata, California.Google Scholar
  52. Sullivan, R. M. (1985). Phyletic, biogeographic and ecological relationships among montane populations of least chipmunks (Eutamias minimus) in the southwest. Syst. Zool. 34:419–448.Google Scholar
  53. Sullivan, R. M., and Petersen, K. E. (1988). Systematics of southwestern populations of least chipmunks (Tamias minimus) reexamined: a synthetic approach. Occ. Papers Southwest. Biol. 5:1–27.Google Scholar
  54. Sutton, D. A. (1982). The female genital bone of chipmunks, genus Eutamias. Southwest. Nat. 27:393–402.Google Scholar
  55. Sutton, D. A. (1987). Analysis of Pacific coast Townsend chipmunks (Rodentia: Sciuridae). Southwest. Nat. 32:371–376.Google Scholar
  56. Sutton, D. A. (1995). Problems of taxonomy and distribution in four species of chipmunks. J. Mammal. 76:843–850.Google Scholar
  57. Sutton, D. A., and Nadler, C. F. (1969). Chromosomes of the North American chipmunk genus Eutamias. J. Mammal. 50:524–535.Google Scholar
  58. Sutton, D. A., and Nadler, C. F. (1974). Systematic revision of three Townsend chipmunks (Eutamias townsendii). Southwest. Nat. 19:199–212.Google Scholar
  59. Swofford, D. L. (1999) Paup*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b2. Sinauer Assoc., Sunderland, MA.Google Scholar
  60. Wade, O., and Gilbert, P. T. (1940). The baculum of some Sciuridae and its significance in determining relationships. J. Mammal. 21:52–63.Google Scholar
  61. White, J. A. (1953a). Genera and subgenera of chipmunks. Univ. Kansas Publ. Mus. Nat. Hist. 5:545–561.Google Scholar
  62. White, J. A. (1953b). Taxonomy of the chipmunks, Eutamias quadrivittatus and Eutamias umbrinus. Univ. Kansas Publ. Mus. Nat. Hist. 5:563–582.Google Scholar
  63. White, J. A. (1953c). Geographic distribution and taxonomy of the chipmunks of Wyoming. Univ. Kansas. Publ. Mus. Nat. Hist. 5:583–610.Google Scholar
  64. White, J. A. (1953d). The baculum in the chipmunks of western North America. Univ. Kansas Publ. Mus. Nat. Hist. 5:611–631.Google Scholar
  65. Yang, Z. (1994). Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J. Mol. Evol. 39:306–314.Google Scholar
  66. Yoder, A. D., Vilgalys, R., and Rovolo, M. (1996). Molecular evolutionary dynamics of cytochrome b in strepsirrhine primates: The phylogenetic significance of third position transversions. Mol. Biol. Evol. 13:1339–1350.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Antoinette J. Piaggio
    • 1
  • Greg S. Spicer
    • 2
  1. 1.Department of BiologySan Francisco State UniversitySan Francisco
  2. 2.Department of BiologySan Francisco State UniversitySan Francisco

Personalised recommendations