Advertisement

Russian Physics Journal

, Volume 43, Issue 9, pp 713–717 | Cite as

Substantiation of the Method of Density Functional in Classical and Quantum Statistical Mechanics

  • O. Yu. Dinariev
Article

Abstract

The relationship between a description of a multicomponent mixture based on the entropy functional with the terms quadratic in the density gradients of components and in the temperature on the one hand, and a description within the framework of classical and quantum statistical mechanics on the other hand, is investigated. Explicit expressions for the entropy functional are written in the context of classical and quantum theories. A quadratic approximation is then calculated for the case of small perturbations of a uniform state. The terms quadratic in the gradients are separated in this approximation. This allows ab initio calculations of the corresponding phenomenological coefficients to be done.

Keywords

Entropy Quantum Statistical Quantum Theory Density Gradient Explicit Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    O. Yu. Dinariev, Prikl. Mat. Mekh., 59, 776 (1995).Google Scholar
  2. 2.
    O. Yu. Dinariev, Prikl. Mat. Mekh., 62, 433 (1998).Google Scholar
  3. 3.
    O. Yu. Dinariev, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 2, 141 (1997).Google Scholar
  4. 4.
    D. N. Zubarev, Nonequilibrium Statistical Thermodynamics [in Russian], Nauka, Moscow (1971).Google Scholar
  5. 5.
    O. Yu. Dinariev, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 5, 60 (1998).Google Scholar
  6. 6.
    O. Yu. Dinariev, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 3, 23 (1998).Google Scholar
  7. 7.
    O. Yu. Dinariev, Teor. Mat. Fiz., 107, 34 (1995).Google Scholar
  8. 8.
    O. Yu. Dinariev, Teor. Mat. Fiz., 108, 50 (1996).Google Scholar
  9. 9.
    O. Yu. Dinariev, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 8, 61 (1996).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • O. Yu. Dinariev
    • 1
  1. 1.Institute of Earth PhysicsRussian Academy of SciencesRussia

Personalised recommendations