Cellulose

, Volume 7, Issue 2, pp 189–209 | Cite as

Trichoderma reesei cellulases and their core domains in the hydrolysis and modification of chemical pulp

  • A. Suurnäkki
  • M. Tenkanen
  • M. Siika-aho
  • M.-L. Niku-Paavola
  • L. Viikari
  • J. Buchert
Article

Abstract

The action of monocomponent Trichoderma reesei endoglucanases (EG I, EG II; EC 3.2.1.4) and cellobiohydrolases (CBH I, CBH II; EC 3.2.1.91) and their core proteins was compared using isolated celluloses and bleached chemical pulp. The presence of cellulose binding domain (CBD) in the intact enzymes did not affect their action against soluble substrates. In the case of insoluble isolated celluloses and the chemical pulp the presence of CBD enhanced the enzymatic hydrolysis of cellulose. The effect of CBD was more pronounced in the cellobiohydrolases, hydrolysing mainly crystalline cellulose, than in the endoglucanases which were more efficient in hydrolysing amorphous cellulose. The pulp properties measured, that is, viscosity and strength after PFI refining, were equally affected by the treatment with intact enzymes and corresponding core proteins, suggesting that the presence of CBD in intact cellulases affects mainly the cellulose hydrolysis level and less the mode of action of T. reesei cellulases in pulp. The better beatability of the bleached chemical pulp treated with intact endoglucanases than that treated with the corresponding core proteins suggests that the presence of CBD in endoglucanases could, however, result in beneficial effects on pulp properties.

cellulases core proteins bleached chemical pulp hydrolysis pulp properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armand, S., Drouillard, S., Schülein, M., Henrissat, B. and Driguez, H. (1997) A bifunctionalized fluorogenic tetrasaccharide as a substrate to study cellulases. J. Biol. Chem. 272, 2709-2713.Google Scholar
  2. Bailey, M.J., Biely, P. and Poutanen, K. (1992) Interlaboratory testing for assay of xylanase activity. J. Biotechnol. 23, 257-270.Google Scholar
  3. Biely, P., Vrsanska, M. and Claeyssens, M. (1991) The endo-1,4-?-glucanase I from Trichoderma reesei. Action on ?-1,4-oligomer and polymers derived from D-glucose and D-xylose. Eur. J. Biochem. 200, 157-163.Google Scholar
  4. Biely, P. and Tenkanen, M. (1998) Enzymology of hemicellulose degradation, In Trichoderma and Gliocladium, G.E. Harman and C.P. Kubicek (eds). London & Bristol, PA: Taylor & Francis, vol. 2, pp. 25-47.Google Scholar
  5. Buchert, J., Siika-aho, M., Pere, J., Valkeajärvi, A. and Viikari, L. (1993) Quantitative determination of wood-derived soluble oligosaccharides by HPLC. Biotechnol. Tech. 7, 785-790.Google Scholar
  6. Claeyssens, M. (1988) The use of chromophoric substrates and specific assays in the study of structure-activity relationships of cellulolytic enzymes, In Biochemistry and Genetics of Cellulose Degradation, J.-P. Aubert, P. Beguin and J. Millet (eds). London: Academic Press, pp. 393-397.Google Scholar
  7. Divne, C., Ståhlberg, J., Reinikainen, T., Ruohonen, L., Pettersson, G., Knowles, J.K.C., Teeri, T.T. and Jones, T.A. (1994) The three-dimensional structure of cellobiohydrolase I from Trichoderma reesei reveals a lysozyme-like active site on lectin-like framework. Science 265, 524-528.Google Scholar
  8. Gilkes, N.R., Jervis, E., Henrissat, B., Tekant, B., Miller, R.C. Jr, Warren, R.A.J. and Kilburn, D.G. (1992) The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose. J. Biol. Chem. 267, 6743-6749.Google Scholar
  9. Hemmpel, W.H. (1991) The surface modification of woven and knitted cellulose fibre fabrics be enzymatic degradation. ITB Dyeing/Printing/Finishing 3, 5-14.Google Scholar
  10. Hestrin, S. (1963) Bacterial cellulose, In Methods in Carbohydrate Chemistry, R.L. Whistler (ed.). New York: Academic Press, vol. 3, pp. 4-9.Google Scholar
  11. IUPAC (1987) Measurement of cellulase activities. Pure Appl. Chem. 59, 257-268.Google Scholar
  12. Jokinen, O., Kettunen, J., Lepo, J., Niemi, T. and Laine, J.E. (1991) United States Pat. 5,068,009.Google Scholar
  13. Knowles, J., Lehtovaara, P. and Teeri, T.T. (1987) Cellulase families and their genes. Trends Biotechnol. 5, 255-261.Google Scholar
  14. Kumar, A., Yoon, M.-Y. and Purtell C. (1997) Optimizing the use of cellulase enzymes in finishing cellulosic fabrics. Textile Chemist and Colorist 29, 37-42.Google Scholar
  15. Lange, N.K. (1993) Application of cellulases in the textile industry, In Proc. 2nd Tricel Meeting, Majvik, Finland, 1993 (T. Reinikainen and P. Suominen, eds). Foundation for Biotechnical and Fermentation Research, vol. 8, pp. 263-272.Google Scholar
  16. Linder, M. and Teeri, T.T. (1997) The roles and function of cellulose-binding domains. J. Biotechnol. 57, 15-28.Google Scholar
  17. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall. R.J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.Google Scholar
  18. Mansfield, S.D., Wong, K.K.Y., de Jong, E. and Saddler, J.N. (1996) Modification of Douglas-fir mechanical and kraft pulps by enzyme treatment. Tappi J. 79, 125-172.Google Scholar
  19. Nevalainen, H. and Penttilä, M. (1995) Molecular biology of cellulolytic fungi, In The Mycota II. Genetics and Biotechnology, U. Kück (ed.). Berlin: Springer-Verlag, pp. 303-319.Google Scholar
  20. Niku-Paavola, M.-L., Lappalainen, A., Enari, T.-M. and Nummi, M. (1985) A new appraisal of the endoglucanases of the fungus Trichoderma reesei. Biochem. J. 231, 75-81.Google Scholar
  21. Noé, P., Chevalier, J., Mora, F. and Comtat, J. (1986) Action of enzymes in chemical pulp fibres. Part II: Enzymatic beating. J. Wood Chem. Technol. 6, 167-184.Google Scholar
  22. Oksanen, T., Pere, J., Buchert, J. and Viikari, L. (1997) The effect of Trichoderma reesei cellulases and hemicellulases on the paper technical properties of never-dried bleached kraft pulp. Cellulose 4, 329-339.Google Scholar
  23. Oksanen, T., Jokinen, O. Buchert, J. and Viikari, L. (2000) Enzyme-aided refining of release papers. In preparation.Google Scholar
  24. Penttilä, M.E., André, L., Lehtovaara, P., Bailey, M., Teeri, T.T. and Knowles, J.K.C. (1988) Efficient secretion of two fungal cellobiohydrolases by Saccharomyces cerevisiae. Gene 63, 103-112.Google Scholar
  25. Pere, J., Siika-aho, M., Buchert, J. and Viikari, L. (1995) Effects of purified Trichoderma reesei cellulases on the fibre properties of kraft pulp. Tappi J. 78, 71-78.Google Scholar
  26. Pere, J., Liukkonen, S., Siika-aho, M., Gullichsen, J. and Viikari, L. (1996) Use of purified enzymes in mechanical pulping, In Proc. 1996 Tappi Pulping Conf., Nashville, TN, 27-31 Oct 1996, pp. 693-696.Google Scholar
  27. Pommier, J.C., Goma, G., Fuentes, J.L., Rousset, C. and Jokinen, O. (1990) Using of enzymes to improve the process and the product quality in the recycled paper industry. Part 2: Industrial applications. Tappi J. 73, 197-202.Google Scholar
  28. Rahkamo, L., Siika-aho, M., Vehviläinen, M., Dolk, M., Viikari, L., Nousiainen, P. and Buchert, J. (1996) Modification of hardwood dissolving pulp with purified Trichoderma reesei cellulases. Cellulose 3, 153-163.Google Scholar
  29. Reinikainen, T., Teleman, O. and Teeri, T.T. (1995) Effects of pH and ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei. Protein 22, 392-403.Google Scholar
  30. Rouvinen, J., Bergfors, T., Teeri, T.T., Knowles, J.K.C. and Jones, T.A. (1990) Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249, 380-386.Google Scholar
  31. Saloheimo, M., Nakari, T., Tenkanen, M. and Penttilä, M. (1998) A new Trichoderma reesei cellulase: cDNA-cloning and demonstration of endoglucanase activity by yeast expression, In Proc. 4th European Conf. Fungal Genetics, León, 4-8 April, p. 166.Google Scholar
  32. Shoemaker, S.P., Watt, K., Tsitovsky, G. and Cox, R. (1983) Characterization and properties of cellulases purified from Trichoderma reesei strain L27. Bio/Technol. 1, 687-690.Google Scholar
  33. Srisodsuk, M., Reinikainen, T., Penttilä, M. and Teeri, T.T. (1993) Role of the interdomain linker peptide of Trichoderma reesei cellobiohydrolase I in its interaction with crystalline cellulose. J. Biol. Chem. 268, 20756-20761.Google Scholar
  34. Stork, G. and Puls, J. (1996) Change in properties of different recycled pulps by endoglucanase treatment, In Biotechnology in Pulp and Paper Industry (E. Srebotnik and K. Messner, eds) Vienna: Facultas Universitätsverlag, pp. 145-150.Google Scholar
  35. Ståhlberg, J., Johansson, G. and Pettersson, G. (1991) A new model for enzymatic hydrolysis of cellulose based on the two-domain structure of cellobiohydrolase I. Bio/Technol. 9, 286-290.Google Scholar
  36. Suominen, P., Mäntylä, A., Karhunen, T., Hakola, S. and Nevalainen, H. (1993) High frequency one-step gene replacement in Trichoderma reesei II. Effects of deletions of individual genes. Mol. Gen. Genet. 241, 523-530.Google Scholar
  37. Suurnäkki, A., Siika-aho, M., Tenkanen, M., Buchert, J. and Viikari, L. (1997) Effects of Trichoderma cellulases and their structural domains on pulp properties, In TAPPI Biol Sci Symp, San Fransisco, pp. 283-286.Google Scholar
  38. Teeri, T.T. (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. TIBTECH 15, 160-167.Google Scholar
  39. Teeri, T.T., Lehtovaara, P., Kauppinen, S., Salovuori, I. and Knowles, J.K.C. (1987) Homologous domains in Trichoderma reesei cellulolytic enzymes: gene sequence and expression of cellobiohydrolase II. Gene 51, 42-52.Google Scholar
  40. Tenkanen, M., Makkonen, M., Perttula, M., Viikari, L. and Teleman, A. (1997) Action of Trichoderma reesei mannanase on galactoglucomannan in pine kraft pulp. J. Biotechnol. 57, 191-204.Google Scholar
  41. Tomme, P., van Tilbeurgh, H., Pettersson, G., Van Damme, J., Vanderkerchove, J., Knowles, J., Teeri, T. and Claeyssens, M. (1988) Studies of cellulolytic system of Trichoderma reesei QM9414: Analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur. J. Biochem. 170, 575-581.Google Scholar
  42. Tormo, J., Lamed, R., Chirino, A.J., Morag, E., Bayer, E.A., Shoham, Y. and Steitz, T.A. (1996) Chrystal structure of a bacterial family III cellulose binding domain: a general mechanism for attachment to cellulose. EMBO J. 15, 5739-5751.Google Scholar
  43. Tyndall, R.M. (1992) Improving the softness and surface appearance of cotton fabrics and garments by treatment with cellulase enzymes. Textile Chemist and Colorist 24, 23-26.Google Scholar
  44. Walseth, C.S. (1952) Occurrence of cellulases in enzyme preparations from microorganisms. TAPPI 35, 228-233.Google Scholar
  45. van Tilbeurgh, H., Tomme, P., Claeyssens, M., Bhikhabhai, R. and Pettersson, G. (1986) Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei. FEBS Lett. 204, 223-227.Google Scholar
  46. Ward, M., Wu, S., Dauberman, J., Weiss, G., Larenas, E., Bower, B., Rey, M., Clarkson, K. and Bott, R. (1993) Cloning, sequence and preliminary structural analysis of a small, high pI endoglucanase (EG III) from Trichoderma reesei, In Proc. 2nd Tricel Meeting, Majvik, Finland, 1993 (T. Reinikainen and P. Suominen, eds). Foundation for Biotechnical and Fermentation Research, vol. 8, pp. 153-158.Google Scholar
  47. Welt, T. and Dinus, R.J. (1995) Enzymatic Deinking-A Review. Progress in Paper Recycling, February, pp. 36-47.Google Scholar
  48. Zurbriggen, B.D., Penttilä, M., Viikari, L. and Bailey, M.J. (1991) Pilot scale production of a Trichoderma reesei endo-?-glucanase by brewer's yeast. J. Biotechnol. 17, 133-146.Google Scholar
  49. Zurbriggen, B.Z., Bailey, M.J., Penttilä, M.E., Poutanen, K. and Linko, M. (1990) Pilot scale production of a heterologous Trichoderma reesei cellulase in Saccharomyces cerevisiae. J. Biotechnol. 13, 267-278.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • A. Suurnäkki
    • 1
  • M. Tenkanen
    • 1
  • M. Siika-aho
    • 1
  • M.-L. Niku-Paavola
    • 1
  • L. Viikari
    • 1
  • J. Buchert
    • 1
  1. 1.VTT Biotechnology and Food ResearchFinland

Personalised recommendations