Chromosome Research

, Volume 7, Issue 4, pp 289–295 | Cite as

Comparative Painting Reveals Strong Chromosome Homology Over 80 Million Years of Bird Evolution

  • Swathi Shetty
  • Darren K. Griffin
  • Jennifer A. Marshall Graves

Abstract

Chickens and the great flightless emu belong to two distantly related orders of birds in the carinate and ratite subclasses that diverged at least 80 million years ago. In the first ZOO-FISH study between bird species, we hybridized single chromosome paints from the chicken (Gallus domesticus) onto the emu chromosomes. We found that the nine macrochromosomes show remarkable homology between the two species, indicating strong conservation of karyotype through evolution. One chicken macrochromosome (4) was represented by a macro- and a microchromosome in the emu, suggesting that microchromosomes and macrochromosomes are interconvertible. The chicken Z chromosome paint hybridized to the emu Z and most of the W, confirming that ratite sex chromosomes are largely homologous; the centromeric region of the W which hybridized weakly may represent the location of the sex determining gene(s).

chicken emu microchromosomes sex chromosomes ZOO-FISH 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ansari HA, Takagi N, Sasaki M (1988) Morphological differentiation of sex chromosomes in three species of ratite birds. Cytogenet Cell Genet 47: 185-188.Google Scholar
  2. de Boer LEM (1980) Do the chromosomes of the kiwi provide evidence for a monophyletic origin of the ratites? Nature 287: 84-85.Google Scholar
  3. Ferguson-Smith MA, Yang F, O'Brien PCM (1998) Comparative mapping using chromosome sorting and painting. ILAR J 39: (2&3) 68-76.Google Scholar
  4. Fillion V (1998) The chicken as a model to study microchromosomes in birds: a review. Genet Sel Evol 30: 209-219.Google Scholar
  5. Fridolfsson AK, Cheng H, Copeland NG et al. (1998) Evolution of the avian sex chromosomes from an ancestral pair of autosomes. Proc Natl Acad Sci USA 95: 8147-8152.Google Scholar
  6. Frönicke L, Muller-Navia J, Romanakis K, Scherthan H (1997) Chromosomal homeologies between human, harbor seal (Phoca vitulina) and the putative ancestral carnivore karyotype revealed by Zoo-FISH. Chromosoma 106: 108-113.Google Scholar
  7. Glas R, De Leo AA, Delbridge ML et al. (1999) Chromosome painting in marsupials: Genome conservation in the kangaroo family. Chromosome Res 7: 161-176.Google Scholar
  8. Graves JAM (1995) The origin and function of the mammalian Y chromosome and Y-borne genes — an evolving understanding. Bioessays 17: 311-320.Google Scholar
  9. Griffin DK, Haberman F, O'Brien PCM et al. (1999) Defining the avian genome using chromosome painting probes isolated by flow cytometry and microdissection. Chromosome Res (submitted).Google Scholar
  10. Härlid A, Janke A, Arnason U (1998) The complete motochondrial genome of Rhea americana and early avian divergences. J Mol Evol 46: 669-679.Google Scholar
  11. Ladjadi K, Tixier-Boichard M, Cribiu EO (1993) High resolution chromosome preparations for G-and R-banding in Gallus domesticus. J Hered 86: 136-139.Google Scholar
  12. Ogawa A, Murata K, Mizuno S (1998) The location of Z-and W-linked marker genes and sequence on the homomorphic sex chromosomes of the ostrich and the emu. Proc Natl Acad Sci USA 95: 4415-4418.Google Scholar
  13. Ohno S (1967) Sex Chromosomes and Sex Determination. Berlin: Springer-Verlag.Google Scholar
  14. Pigozzi MI, Solari AJ (1997) Extreme axial equalization and wide distribution of recombination nodules in the primitive ZW pair of Rhea americana (Aves, Ratitae). Chromosome Res 5: 421-428.Google Scholar
  15. Raudsepp T, Frönicke L, Scherthan H, Gustavsson I, Chowdhary BP (1996) Zoo-FISH delineates conserved chromosomal segments in horse and man. Chromosome Res 4: 218-225.Google Scholar
  16. Rettenberger G, Klett CH, Zeehner U et al. (1995) Zoo-FISH analysis: cat and human karyotypes closely resemble the putative ancestral mammalian karyotype. Chromosome Res 3: 479-486.Google Scholar
  17. Rodoinov AV (1997) Evolution of avian chromosome and linkage groups. Russian J Genet 33: 605-617.Google Scholar
  18. Scherthan H, Cremer T, Arnason U, Weier H, Lima-de-Faria A, Frönicke L (1994) Comparative chromosome painting discloses homologous segments in distantly related mammals. Nature Genet 6: 342-347.Google Scholar
  19. Schmid M, Enderle E, Schindler D, Schempp W (1995) Chromosome banding and replication patterns in bird karyotypes. Cytogenet Cell Genet 5: 139-146.Google Scholar
  20. Sibley CG, Ahlquist JE. (1990) Phylogeny and Classification of Birds. New Haven, Connecticut: Yale University Press.Google Scholar
  21. Solari AJ (1993) Sex Chromosomes and Sex Determination in Vertebrates. Boca Raton, Florida: CRC Press, pp. 43-73.Google Scholar
  22. Solinas-Toldo S, Lengauer C, Fries R (1995) Comparative genome map of human and cattle. Genomics 27: 489-496.Google Scholar
  23. Stapel SO, Leunissen JAM, Versteeg M, Wattel J, Jong WW de (1984) Ratites as oldest offshoot of avian stem — evidence from α-crystallin A sequences. Nature 311: 257-259.Google Scholar
  24. Stevens L (1997) Sex chromosomes and sex determining mechanisms in birds. Sci Prog 80(3): 197-216.Google Scholar
  25. Telenius H, Pelmear A, Tunnacliffe A et al. (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer 4: 257-263.Google Scholar
  26. Thorne M, Sheldon BL (1993) Triploid intersex and chimeric chickens: Useful models for studies of avian sex determination. In: Reed KC, Graves JAM, eds. Sex Chromosomes and Sex Determining Genes. Chur, Switzerland: Harwood Academic, pp 201-208.Google Scholar
  27. Toder R, O'Neill RJW, Weinberg J, O'Brien PCM, Voullaire L, Graves JAM (1997) Comparative chromosome painting between two marsupials: origins of an XX/XY1 Y2 sex chromosome system. Mammalian Genome 8: 418-422.Google Scholar
  28. Yang F, O'Brien PCM, Wienberg J, Neitzel H, Lin CC, Ferguson-Smith MA (1997) Chromosomsal evolution of the chinese muntjac (Muntiacus reevesi). Chromosoma 106: 37-43.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Swathi Shetty
    • 1
  • Darren K. Griffin
    • 2
  • Jennifer A. Marshall Graves
    • 1
  1. 1.Department of Biochemistry and GeneticsLa Trobe UniversityBundooraAustralia
  2. 2.Department of Biological SciencesBrunel UniversityUxbridge, Middlesex, UB8 3PHUK

Personalised recommendations