Chromosome Research

, Volume 8, Issue 6, pp 465–476 | Cite as

Molecular cloning and characterization of the Fugu rubripes MEST/COPG2 imprinting cluster and chromosomal localization in Fugu and Tetraodon nigroviridis

  • Bodo Brunner
  • Frank Grützner
  • Marie-Laure Yaspo
  • Hans-Hilger Ropers
  • Thomas Haaf
  • Vera M. Kalscheuer
Article

Abstract

We isolated Fugu genomic clones using the human MEST (Mesoderm-Specific Transcript) cDNA as probe. Sequence analysis revealed the presence of MEST and three additional genes which show homology to plant DNBP (DNA-Binding Protein), vertebrate COPG2 (Coat Protein Gamma 2), as well as to human and mouse UCN (Urocortin). Structures of Fugu and human MEST, COPG2 and UCN genes are very similar. Since MEST and COPG2 are neighboring genes on human chromosome 7q32, we can conclude that we identified their orthologs and that linkage of these genes is evolutionarily conserved in vertebrates. Unlike human MEST which underlies isoform-specific imprinting and is methylated in a parent-of-origin-specific fashion, the CpG island of the Fugu ortholog is completely methylated. The translation start of FuguMEST is identical to the non-imprinted human isoform which is in good agreement with the assumption that genomic imprinting is restricted to mammals. Comparative mapping of these genes by fluorescence in-situ hybridization to metaphase chromosomes of Fugu rubripes and Tetraodon nigroviridis showed clear signals on one of the smallest acrocentric chromosomal pairs, which in Fugu, can be easily classified by its unique triangular shape.

COPG2 Fugu rubripes imprinting MEST Tetraodon nigroviridis UCN 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aparicio S, Morrison A, Gould A et al. (1995) Detecting con-served regulatory elements with the model genome of the Japanese puffer fish, Fugu rubripes. Proc Natl Acad Sci USA 92: 1684-1688.PubMedCrossRefGoogle Scholar
  2. Barsyte D, Tipping DR, Smart D, Conlon JM, Baker BI, Lovejoy DA (1999) Rainbow trout (Oncorhynchus mykiss) urotensin-I: Structural differences between urotensins-I and urocortins. Gen Comp Endocrinol 115: 169-177.PubMedCrossRefGoogle Scholar
  3. Baxendale S, Abdulla S, Elgar G et al. (1995) Comparative sequence analysis of the human and pufferfish Huntingtons disease genes. Nat Genet 10: 67-76.PubMedCrossRefGoogle Scholar
  4. Blagitko N, Schulz U, Schinzel AA, Ropers HH, Kalscheuer VM (1999) Gamma2-COP, a novel imprinted gene on chromosome 7q32, defines a new imprinting cluster in the human genome. Hum Mol Genet 8: 2387-2396.PubMedCrossRefGoogle Scholar
  5. Bradford CS, Miller AE, Toumadje A, Nishiyama K, Shirahata S, Barnes DW (1997) Characterization of cell cultures derived from Fugu, the Japanese pufferfish. Mol Marine Biol Biotech 6: 279-288.Google Scholar
  6. Brenner S, Elgar G, Sandford R, Macrae A, Venkatesh B, Aparicio S (1993) Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature 366: 265-268.PubMedCrossRefGoogle Scholar
  7. Brunner B, Todt T, Lenzner S et al. (1999) Genomic structure and comparative analysis of nine Fugu genes: Conservation of synteny with human chromosome Xp22.2-p22.1 Genome Res 9: 437-448.PubMedGoogle Scholar
  8. Coutelle O, Nyakatura G, Taudien S et al. (1998) The neural cell adhesion molecule L1-genomic organisation and differential splicing is conserved between man and the pufferfish Fugu. Gene 208: 7-15.PubMedCrossRefGoogle Scholar
  9. Crnogorac-Jurcevic T, Brown JR, Lehrach H, Schalkwyk LC (1997) Tetraodon fluviatilis, a new puffer fish model for genome studies. Genomics 41: 177-184.PubMedCrossRefGoogle Scholar
  10. Donaldson CJ, Sutton SW, Perrin MH et al. (1996) Cloning and characterization of human urocortin. Endocrinology 137: 2167-2170.PubMedCrossRefGoogle Scholar
  11. Elgar G, Clark MS, Meek S et al. (1999) Generation and analysis of 25 Mb of genomic DNA from the pufferfish Fugu rubripes by sequence scanning. Genome Res 9: 960-971.PubMedCrossRefGoogle Scholar
  12. Fukushima A, Okuda A, Nishimoto M, Seki N, Hori T, Muramatsu M (1998) Characterization of functional domains of an embryonic stem cell coactivator UTF1 which are conserved and essential for potentiation of ATF-2 activity. J Biol Chem 273: 25840-25849.PubMedCrossRefGoogle Scholar
  13. Grützner F, Lutjens G, Rovira C, Barnes DW, Ropers HH, Haaf T (1999) Classical and molecular cytogenetics of the pufferfish Tetraodon nigroviridis. Chromosome Res 7: 655-662.PubMedCrossRefGoogle Scholar
  14. Kalscheuer VM, Mariman EC, Schepens MT, Rehder H, Ropers HH (1993) The insulin-like growth factor type-2 receptor gene is imprinted in the mouse but not in humans. Nat Genet 5: 74-78.PubMedCrossRefGoogle Scholar
  15. Kosaki K, Kosaki R, Craigen W, Matsuo N (2000). Isoform-specific imprinting of the human PEG1/MEST gene. Am J Hum Genet 66: 309-312.PubMedCrossRefGoogle Scholar
  16. Lefebvre L, Viville S, Barton S, Ishino F, Surani MA (1997) Genomic structure and parent-of-origin-specific methylation of Peg1. Hum Mol Genet 6: 1907-1915.PubMedCrossRefGoogle Scholar
  17. Lovejoy DA, Balment RJ (1999) Evolution and physiology of the corticotropin-releasing factor (CRF) family of neuropeptides in vertebrates. Gen Comp Endocrinol 115: 1-22.PubMedCrossRefGoogle Scholar
  18. Marshall H, Studer M, Popperl H et al. (1994) A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1. Nature 370: 567-571.PubMedCrossRefGoogle Scholar
  19. Mason PJ, Stevens DJ, Luzzatto L, Brenner S, Aparicio S (1995) Genomic structure and sequence of the Fugu rubripes glucose-6-phosphate dehydrogenase gene (G6PD). Genomics 26: 587-591.PubMedCrossRefGoogle Scholar
  20. Miles C, Elgar G, Coles E, Kleinjan DJ, VanHeyningen V, Hastie N (1998) Complete sequencing of the Fugu WAGR region from WT1 to PAX6-dramatic compaction and conservation of synteny with human chromosome 11p13. Proc Natl Acad Sci USA 95: 13068-13072.PubMedCrossRefGoogle Scholar
  21. Nishita Y, Sado T, Yoshida I, Takagi N (1999) Effect of CpG methylation on expression of themouse imprinted gene. Mest Gene 226: 199-209.CrossRefGoogle Scholar
  22. Okuda A, Fukushima A, Nishimoto M et al. (1998) UTF1, a novel transcriptional coactivator expressed in pluripotent embryonic stem cells and extra-embryonic cells. EMBO J 17: 2019-2032.PubMedCrossRefGoogle Scholar
  23. Powers D (1991) Evolutionary genetics of fish. Adv Genet 29:119-223.PubMedCrossRefGoogle Scholar
  24. Riesewijk AM, Hu L, Schulz U et al. (1997) Monoallelic expression of human PEG1/MEST is paralleled by parent-specificmethylation in fetuses. Genomics 42: 236-244.PubMedCrossRefGoogle Scholar
  25. Trower MK, Orton SM, Purvis IJ et al. (1996) Conservation of synteny between the genome of the pufferfish (Fugu rubripes) and the region on human chromosome 14 (14q24.3) associ-ated with familial Alzheimer disease (Ad3 locus). Proc Natl Acad Sci USA 93: 1366-1369.PubMedCrossRefGoogle Scholar
  26. Venkatesh B, Sihoe SL, Murphy D, Brenner S (1997) Transgenic rats reveal functional conservation of regulatory controls between the Fugu isotocin and rat oxytocin genes. Proc Natl Acad Sci USA 94: 12462-12466.PubMedCrossRefGoogle Scholar
  27. Zhao L, Donaldson CJ, Smith GW, Vale WW (1998) The structures of the mouse and human urocortin genes (Ucn and UCN). Genomics 15: 23-33.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Bodo Brunner
    • 1
  • Frank Grützner
    • 1
  • Marie-Laure Yaspo
    • 1
  • Hans-Hilger Ropers
    • 1
  • Thomas Haaf
    • 1
  • Vera M. Kalscheuer
    • 1
  1. 1.Max-Planck-Institute for Molecular GeneticsBerlinGermany

Personalised recommendations