, Volume 6, Issue 1, pp 1–13 | Cite as

Spectroscopic Ellipsometry Characterisation and Estimation of the Hamaker Constant of Cellulose

  • Lennart Bergström
  • Sara Stemme
  • Torbjörn Dahlfors
  • Hans Arwin
  • Lars Ödberg


Calculations of Hamaker constants using Lifshitz theory require the availability of accurate dielectric data, especially in the visible-ultraviolet region. We present spectroscopic ellipsometry data on well-defined cellulose films of a limited thickness range (100–140 layers) deposited on an oxidised and hydrophobised silicon substrate. The spectral data, representing measurements from a perpendicular orientation to the fibre deposition direction, was used for estimates of the necessary spectral parameters, i.e. the oscillator strengths and characteristic frequencies in the UV-range. Our calculations show that cellulose has a relatively low Hamaker constant in air (58 zJ) and water (8.0 zJ). The implications for the surface energy estimates of cellulose and colloidal interactions between cellulose and various types of fillers and coating colours are indicated.

Hamaker cellulose spectroscopic ellipsometry refractive index paper 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aspnes, D. E. and Studna, A. A. (1975) 'High Precision Scanning Ellipsometry'. Appl. Opt. 14, 220-228.Google Scholar
  2. Aspnes, D. E. (1985) 'The Accurate Determination of Optical Properties by Ellipsometry', pp. 89-112, in Handbook of Optical Constants of Solids, Ed. E. D. Palik, Academic Press, Orlando, FL, 1985.Google Scholar
  3. Azzam, R. M. A. and Bashara, N. M. (1987) Ellipsometry and Polarized Light, North-Holland.Google Scholar
  4. Bergström, L. (1997) 'Hamaker Constants of Inorganic Materials', Adv. Coll. Interface Sci. 70, 125-169.Google Scholar
  5. Brandrup, J. and Immergut, E. H. (Eds) (1989) Polymer Handbook, 3rd Ed. Wiley, New York.Google Scholar
  6. Buchholz, V., Wegner, G., Stemme, S. and Ödberg, L. (1996) 'Regeneration, Derivatization and Utilization of Cellulose in Ultrathin Films', Adv. Mater. 8, 399-402.Google Scholar
  7. Campbell, A. (1907) 'On the electric inductive capacities of dry paper and of solid cellulose', Proc. Roy. Soc. 196-211.Google Scholar
  8. Casey, J. (Ed.) (1980) Pulp and Paper Chemistry and Chemical Technology, Wiley, New York.Google Scholar
  9. Drummond, C. J. and Chan, D. Y. C. (1996) 'Theoretical analysis of the soiling of ‘nonstick’ organic materials', Langmuir, 12, 3356-3359.Google Scholar
  10. Drummond, C. J. (1998) Personal communication.Google Scholar
  11. Dzyaloshinskii, I. E., Lifshitz, E. M. and Pitaevskii, L. P. (1961) 'The General Theory of van der Waals Forces'. Adv. Phys. 10, 165-209.Google Scholar
  12. Evans, R. and Luner, P. (1989) 'Coagulation of microcrystalline cellulose dispersions', J. Coll. Interface Sci. 128, 464-475.Google Scholar
  13. Hamaker, H. C. (1937) 'The London-van der Waals Attraction Between Spherical Particles', Physica 4, 1058-1072.Google Scholar
  14. Hearle, J. W. S. (1954) 'Capacity, dielectric constant, and power factor of fiber assemblies', Textile Res. J. April, 307-321.Google Scholar
  15. Holmberg, M., Berg, J., Stemme, S., Ödberg, L., Rasmusson, J. and Claesson, P. (1997) 'Surface Force Studies of Langmuir-Blodgett Cellulose Films', J. Coll. Interface Sci. 186, 369-381.Google Scholar
  16. Hough, D. B. and White, L. R. (1980) 'The calculation of Hamaker constants from Lifshitz theory with applications to wetting phenomena', Adv. Colloid Interface Sci. 14, 3-29.Google Scholar
  17. Israelachvili, J. (1992) Intermolecular and Surface Forces, 2nd ed., London, Academic Press.Google Scholar
  18. Katz, S. and Gray, D. G. (1981) 'The adsorption of hydrocarbons on cellophane'. J. Coll. Interface Sci 82, 339-351.Google Scholar
  19. Lifshitz, E. M. (1956) 'The Theory of Molecular Attractive Forces between Solids', Sov. Phys. JETP 2, 73-83.Google Scholar
  20. de Luca, H. A., Boyd Campbell, W. and Maass, O. (1938) 'Measurement of the dielectric constant of cellulose', Can. J. Research 16, 273-288.Google Scholar
  21. Mahanty, J. and Ninham, B. W. (1976) Dispersion Forces, London, Academic Press.Google Scholar
  22. Parsegian, V. A. (1975) 'Long range van der Waals forces', in Physical Chemistry: Enriching Topics from Colloid and Surface Science, H. van Olphen and K. J. Mysels (Eds), La Jolla, CA, Theorex.Google Scholar
  23. Rance, H. F. (Ed.) (1980) Handbook of Paper Science. Vol 1. The Raw Materials and Processing of Papermaking, Elsevier, Amsterdam.Google Scholar
  24. Roth, C. M. and Lenhoff, A. M. (1996) 'Improved parametric representation of water dielectric data for Lifshitz theory calculations'. J. Coll. Interface Sci. 179, 637-639.Google Scholar
  25. Russel, W. B., Saville, D. A. and Schowalter, W. R. (1989) Colloidal Dispersions, Cambridge, Cambridge University Press.Google Scholar
  26. Schaub, M., Wenz, G., Wegner, G., Stein, A. and Klemm, D. (1993) 'Ultrathin Films of Cellulose on Silicon Wafers', Adv. Mater. 5, 919-922.Google Scholar
  27. Stoops, W. N. (1934) 'The dielectric properties of cellulose', J. Am. Chem. Soc. 56, 1480-1483.Google Scholar
  28. Tabor, D. and Winterton, R. H. S. (1969) 'The Direct Measurement of Normal and Retarded van der Waals Forces', Proc. Roy. Soc. London A 312, 435-450.Google Scholar
  29. Venkateswaran, A. (1965) 'Formulas for the dielectric constant and dissipation factor of mixtures and their application to the cellulose system', J. Appl. Polym. Sci. 9, 1127-1138.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Lennart Bergström
    • 1
  • Sara Stemme
    • 2
  • Torbjörn Dahlfors
    • 2
  • Hans Arwin
    • 3
  • Lars Ödberg
    • 2
  1. 1.Institute for Surface ChemistryStockholmSweden
  2. 2.Swedish Pulp and Paper Research InstituteStockholmSweden
  3. 3.Department of Physics and Measurement TechnologyLinköping Institute of TechnologyLinköpingSweden

Personalised recommendations