Chromosome Research

, Volume 7, Issue 7, pp 531–540

Genomic Differentiation of 18S Ribosomal DNA and β-Satellite DNA in the Hominoid and its Evolutionary Aspects

  • Hirohisa Hirai
  • Takahiro Taguchi
  • Andrew K. Godwin


The chromosome localization of two human multisequence families, rDNA and β-satellite (β-sat) DNA, was determined in humans and apes using double color fluorescence in-situ hybridization. Both DNA probes showed a distinct hybridization pattern with species-specific variations in hominoids. The stepwise differentiation of the integration, amplification, multilocalization, and reduction of the DNAs were observed interspecifically through the seven species examined. The stepwise events allowed us to trace back a phylogenetic divergence of the hominoid at the cytogenetic level. The manifestation of the events revealed that variations of the Y chromosome and acrocentric autosomes were synapomorphic characters in the divergence and those of metacentric autosomes were autapomorphic characters. Multilocalization of rDNA in the hominoid could also be interpreted as a result of translocations in terms of hetero-site crossover followed by a centric fission and formation of an acrocentric chromosome. Based on the observed rearrangements of rDNA and β-sat DNA, we propose the following chromosomal phylogenetic divergence order in hominoids: gibbon-siamang-orangutan-gorilla-human-chimpanzee-bonobo. Our data provide additional evidence that evolution of the hominoid can be effectively studied using cytogenetic approaches.

chromosome evolution FISH hominoids ribosomal DNA β-satellite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agresti A, Rainaldi G, Lobbiani A et al. (1987) Chromosomal localization by in situ hybridization of the human Sau3A family of DNA repeats. Hum Genet 75: 326–332.PubMedCrossRefGoogle Scholar
  2. Arnheim N (1983) Concerted evolution of multigene families. In: Nei M, Koehn RK, eds. Evolution of Genes and Proteins. Sunderland: Sinauer Associates Inc, pp 38–61.Google Scholar
  3. Arnheim N, Krystal M, Schmickel R, Wilson G, Ryder O, Zimmer E (1980) Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and apes. Proc Natl Acad Sci USA 77: 7323–7327.PubMedCrossRefGoogle Scholar
  4. Assum G, Fink T, Steinbeißer T, Fisel KJ (1993) Analysis of human extrachromosomal DNA elements originiating from different β-satellite subfamilies. Hum Genet 91: 489–495.PubMedCrossRefGoogle Scholar
  5. Assum G, Gartmann C, Schempp W, Wöhr G (1994) Evolution of the chAB4 multisequence family in primates. Genomics 21: 34–41.PubMedCrossRefGoogle Scholar
  6. Assum G, Pasantes J, Gläser B, Schempp W, Wöhr G (1998) Concerted evolution of members of the multisequence family chAB4 located on various nonhomologous chromosomes. Mammalian Genome 9: 58–63.PubMedCrossRefGoogle Scholar
  7. Borowik OA (1995) Coding chromosomal data for phylogenetic analysis: phylogenetic resolution of the pan-homo-gorilla trichotomy. Syst Biol 44: 563–570.CrossRefGoogle Scholar
  8. Dover G, Coen E (1981) Springcleaning ribosomal DNA: a model for multigene evolution. Nature 290: 731–732.PubMedCrossRefGoogle Scholar
  9. Driscoll DJ, Palmer CG, Melman A (1979) Nonhomologous associations of C-heterochromatin at human male meiotic prophase. Cytogenet Cell Genet 23: 23–32.PubMedGoogle Scholar
  10. Gläser B, Grützner F, Willmann U et al. (1998) Simian Y chromosomes: species-specific rearrangements of DAZ, RBM and TSPY versus contiguity of PAR and SRY. Mammanlian Genome 9: 226–231.CrossRefGoogle Scholar
  11. Greig GM, Willard HF (1992) β Satellite DNA: characterization and localization of two subfamilies from the distal and proximal short arms of the human acrocentric chromosomes. Genomics 12: 573–580.PubMedCrossRefGoogle Scholar
  12. Harding RM, Boyce AJ, Clegg JB (1992) The evolution of tandemly repetitive DNA: Recombination rules. Genetics 132: 847–859.PubMedGoogle Scholar
  13. Henderson AS, Atwood KC, Warburton D (1976) Chromosomal distribution of rDNA in Pan paniscus, Gorilla gorilla beringei, and Symphalangus syndactylus: Comparison to related primates. Chromosoma 59: 147–155.PubMedCrossRefGoogle Scholar
  14. Hirai H, LoVerde PT (1995) FISH techniques for constructing physical maps on schistosome chromosomes. Parasitol Today 11: 310–314.PubMedCrossRefGoogle Scholar
  15. Hirai H, Yamamoto M-T, Ogura K et al. (1994) Multiplication of 28S rDNA and NOR activity in chromosome evolution among ants of the Myrmecia pilosula species complex. Chromosoma 103: 171–178.PubMedGoogle Scholar
  16. Hirai H, Yamamoto M-T, Taylor RW, Imai HT (1996) Genomic dispersion of 28S rDNA during karyotypic evolution in the ant genus Myrmecia (Formidae). Chromosoma 105: 190–196.PubMedCrossRefGoogle Scholar
  17. Hirai H, Hasegawa Y, Kawamoto Y, Tokita E (1998) Tandem duplication of nucleolus organizer region (NOR) in the Japanese macaque, Macaca fuscata fuscata. Chromosome Res 6: 191–197.PubMedCrossRefGoogle Scholar
  18. Holmquist GP, Kapitonov VV, Jurka J (1998) Mobile genetic elements, chiasmata, and the unique organization of beta-heterochromatin. Cytogenet Cell Genet 80: 113–116.PubMedCrossRefGoogle Scholar
  19. Imai HT, Maruyama T, Gojobori T, Inoue Y, Crozier RH (1986) Theoretical bases for karyotype evolution. 1. The minimum-interaction hypothesis. Am Nat 128: 900–920.CrossRefGoogle Scholar
  20. Jantsch M, Hamilton B, Mayr B, Schweizer D (1990) Meiotic chromosome behaviour reflects levels of sequence divergence in Sus scrofa domestica satellite DNA. Chromosoma 99: 330–335.PubMedCrossRefGoogle Scholar
  21. Koide T, Ishiura M, Hazumi N, Shiroishi T, Okada Y, Uchida T (1990) Amplification of a long sequence that includes a processed pseudogene for elongation factor 2 in the mouse. Genomics 6: 80–88.PubMedCrossRefGoogle Scholar
  22. Ledbetter DH (1981) NOR-bearing Y chromosome in a primate, Hylobates (Symphalangus) syndactylus. Cytogenet Cell Genet 29: 250–252.PubMedGoogle Scholar
  23. Maeda N, Smithies O (1986) The evolution of multigene families: Human haptoglobin genes. Ann Rev Genet 20: 81–108.PubMedCrossRefGoogle Scholar
  24. Meneveri R, Agresti A, Della Valle G, Talarico D, Siccardi AG, Ginelli E (1985) Identification of a human clustered G+C-rich family of repeats (Sau3A family). J Mol Biol 186: 483–489.PubMedCrossRefGoogle Scholar
  25. Meneveri R, Agresti A, Marozzi A et al. (1993) Molecular organization and chromsomal location of human GC-rich heterochromatic blocks. Gene 123: 227–234.PubMedCrossRefGoogle Scholar
  26. Meneveri R, Agresti A, Rocchi M, Marozzi A, Ginelli E (1995) Analysis of GC-rich repetitive nucleotide sequences in great apes. J Mol Evol 40: 405–412.PubMedCrossRefGoogle Scholar
  27. Nasir J, Fisher EMC, Brockdorff N, Disteche CM, Lyon MF, Brown SD (1990) Unusual molecular characteristics of a repeat sequence island within a giemsa-positive band on the mouse X chromosome. Proc Natl Acad Sci USA 87: 399–403.PubMedCrossRefGoogle Scholar
  28. Ohta T (1987) Simulating evolution by gene duplication. Genetics 115: 207–213.PubMedGoogle Scholar
  29. Ohta T, Dover GA (1983) Population genetics of multigene families that are dispersed into two or more chromosomes. Proc Natl Acad Sci USA 80: 4079–4083.PubMedCrossRefGoogle Scholar
  30. Schempp W, Zeitler S, Reitschel W (1998) Chromosomal localization of rDNA in the gorilla. Cytogenet Cell Genet 80: 185–187.PubMedCrossRefGoogle Scholar
  31. Schmid M, Krone W, Vogel W (1974) On the relationship between the frequency of association and the nuclear constriction of individual acrocentric chromosomes. Humangenetik 23: 267–277.PubMedCrossRefGoogle Scholar
  32. Schmid M, Grunert D, Haaf T, Engel W (1983) A direct demonstration of somatically paired heterochromatin of human chromosomes. Cytogenet Cell Genet 36: 554–561.PubMedGoogle Scholar
  33. Schwarzacher T, Mayr B, Scweizer D (1984) Heterochromatin and necleolus-organizer-region behaviour at male pachytene of Sus scriofa domestica. Chromosoma 91: 12–19.PubMedCrossRefGoogle Scholar
  34. Schweizer D, Loidl J (1987) A model for heterochromatin dispersion and the evolution of C-band patterns. Chromosomes Today 9: 61–74.Google Scholar
  35. Seuanez HN, Evans HJ, Martin DE, Fletcher J (1979) An inversion of chromosome 2 that distinguishes between Bornean and Sumatran orangutans. Cytogenet Cell Genet 23: 137–140.PubMedGoogle Scholar
  36. Suzuki H, Kurihara T, Kanehisa T, Moriwaki K (1990) Variation in the distribution of silver-staining nucleolar organizer regions on the chromosomes of the wild mouse, Mus musculus. Mol Biol Evol 7: 271–282.PubMedGoogle Scholar
  37. Tartof KD, Dawid IB (1976) Similarities and differences in the structure of X and Y chromosome rDNA genes of Drosophila. Nature 263: 27–30.PubMedCrossRefGoogle Scholar
  38. Tuck-Muller CM, Bordson BL, Varela M, Bennett JW (1984) NOR associations with heterochromatin. Cytogenet Cell Genet 38: 165–170.PubMedCrossRefGoogle Scholar
  39. Waye JS, Willard HF (1989) Human β satellite DNA: Genomic organization and sequence definition of a class of highly repetitive tandem DNA. Proc Natl Acad Sci USA 86: 6250–6254.PubMedCrossRefGoogle Scholar
  40. Yunis J, Prakash O (1982) The origin of man: A chromosomal pictorial legacy. Science 215: 1525–1530.PubMedGoogle Scholar
  41. Zang KD, Back E (1968) Quantitative studies on the arrangement of human metaphase chromosomes. I. Individual features in the association pattern of the acrocentric chromosomes of normal males and females. Cytogenetics 7: 455–470.PubMedGoogle Scholar
  42. Zimmer EA, Martin SL, Beverley SM, Kan YW, Wilson AC (1980) Rapid duplication and loss of genes coding for the α chains of hemoglobin. Proc Natl Acad Sci USA 77: 2158–2162.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Hirohisa Hirai
    • 1
  • Takahiro Taguchi
    • 2
  • Andrew K. Godwin
    • 3
  1. 1.Primate Research InstituteKyoto UniversityInuyama, AichiJapan
  2. 2.Department of AnatomyKochi Medical SchoolNankoku, KochiJapan
  3. 3.Department of Medical OncologyFox Chase Cancer CenterPhiladelphiaUSA

Personalised recommendations