Advertisement

Cellulose

, Volume 7, Issue 1, pp 35–55 | Cite as

A comparative CP/MAS 13C-NMR study of cellulose structure in spruce wood and kraft pulp

  • Eva-Lena Hult
  • Per Tomas Larsson
  • Tommy Iversen
Article

Abstract

CP/MAS 13C-NMR spectroscopy in combination with spectral fitting was used to study the supermolecular structure of the cellulose fibril in spruce wood and spruce kraft pulp. During pulping, structures contributing to inaccessible surfaces in the wood cellulose are converted to the cellulose Iβ allomorph, that is, the degree of order is increased. This increase is also accompanied by a conversion of cellulose Iα to cellulose Iβ. Cellulose from wood composed of different cell types, that is, compression wood, juvenile wood, earlywood, latewood and normal wood exhibited a similar supermolecular structure. Assignments were made for signals from hemicellulose which contribute significantly to the spectral C-4 region (80–86 ppm) in kraft pulp spectra but substantially less to the corresponding region in wood spectra.

cellulose hemicellulose kraft pulp NMR spruce wood 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atalla, R. H. (1978) The influence of elevated temperatures on structure in the isolation of native cellulose. J. Polym. Sci. (Polymer Letters Edition) 16, 601-605.Google Scholar
  2. Atalla, R. H., Gast, J. C., Sindorf, O. W., Bartuska, V. J. and Maciel, G. E. (1980) 13C NMR spectra of cellulose polymorphs. J. Am. Chem. Soc. 102, 3251-3252.Google Scholar
  3. Bailey, M. J., Puls, J. and Poutanen K. (1991) Purification and properties of 2 xylanases from aspergillus-oryzae. Biotechnol. Appl. Biochem. 13, 380-389.Google Scholar
  4. Bass, P. (1982) New Perspectives in Wood Anatomy. The Hague, Martinus Nijhoff.Google Scholar
  5. Chanzy, H., Imada, K. and Vuong, R. (1978) Electron diffraction from the primary wall of cotton fibers. Protoplasma 94, 299-306.Google Scholar
  6. Chanzy, H., Imada, K., Mollard, A., Voung, R. and Barnoud, F. (1979) Crystallographic aspects of sub-elementary cellulose fibrils occuring in the wall of rose cells cultured in vitro. Protoplasma 100, 303-316.Google Scholar
  7. Duchesne, I. (1999) Surface Ultrastructure of Norway Spruce Kraft Pulp Fibres. Licentiate Thesis. Swedish University of Agricultural Sciences, Uppsala, Sweden.Google Scholar
  8. Earl, W. L. and VanderHart D. L. (1980) High-resolution, magic angle spinning C-13 NMR of solid cellulose-I. J. Am. Chem. Soc. 102, 3251-3252.Google Scholar
  9. Evans, R. E., Newman, R. H., Roick, U. C., Suckling, I. D. and Wallis, A. F. A. (1995) Changes in cellulose crystallinity during kraft pulping. An analysis by three methods. Holzforschung 49, 498-504.Google Scholar
  10. Gidley, M. J., McArthur, A. J. and Underwood, D. R. (1991) 13C NMR characterization of molecular structures in powders, hydrates and gels of galactomannans and glucomannans. Food Hydrocoll. 5, 129-140.Google Scholar
  11. Ha, M.-A., Apperley, D. V., Evans, B. W., Huxham, M., Jardine, W. G., Remco, J. V., Reis, D., Vian, B. and Jarvis, M. C. (1998) Fine structure in cellulose microfibrils: NMR evidence from onion and quince. The Plant J. 16, 183-190.Google Scholar
  12. Hattula, T. (1986) Effect of kraft cooking on the ultrastructure of wood cellulose. Paperi ja Puu 12, 926-931.Google Scholar
  13. Heux, L., Dinand, E. and Vignon, M. R. (1999) Structural aspects of ultrathin cellulose microfibrils followed by 13C CP-MAS NMR. Carbohyd. Polym. 40, 115-124.Google Scholar
  14. Higuchi, T. (1997) Biochemistry and Molecular Biology of Wood. Germany, Springer Verlag.Google Scholar
  15. Horii, F., Yamamoto, H. and Kitmaru, R. (1984) CP/MAS carbon-13 NMR study of spin relaxation phenomena of cellulose containing crystalline and noncrystalline components. J. Carbohyd. Chem. 4, 641-662Google Scholar
  16. Ioelovitch, M. (1992) Zur übermolekularen Struktur von nativen und isolierten Cellulosen. Acta Polym. 43, 110-113.Google Scholar
  17. Isogai, A., Akishima, Y., Onabe, F. and Usuda, M. (1991) Structural changes of amorphous cellulose by alkaline pulping treatments. Nord. Pulp Pap. Res. J. 4, 161-165.Google Scholar
  18. Jakob, H. F., Fengel, D., Tschegg, S. E. and Fratzl, P. (1995) The elementary cellulose fibril in Picea abies: Comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results. Macromolecules 28, 8782-8787.Google Scholar
  19. Janson, J. O. G. (1974) Analytik der Polysaccharide in Holz und Zellstoff. Faserforschung und Textiltechnik 25, 379-380.Google Scholar
  20. Krässig, H. A. (1993) Cellulose. Structure, Accessibility and Reactivity. Polymer Monographs. Vol.11, Swizerland: Gordon and Breach Science Publishers.Google Scholar
  21. Kulshreshtha, A. K. and Dweltz, N. E. (1973) Paracrystalline lattice disorder in cellulose. I Reappraisal of the application of the two-phase hypothesis to the analysis of powder X-ray diffractograms of native and hydrolysed cellulosic materials. J. Polym. Sci. 11, 487-497.Google Scholar
  22. Larsson, P. T., Westermark, U. and Iversen, T. (1995) Determination of the cellulose Iα allomorph content in a tunicate cellulose by CP/MAS 13C-NMR spectroscopy. Carbohyd. Res. 278, 339-343.Google Scholar
  23. Larsson, P. T., Wickholm, K. and Iversen, T. (1997) A CP/MAS 13C NMR investigation of molecular ordering in celluloses. Carbohyd. Res. 302, 19-25.Google Scholar
  24. Lennholm, H. (1994) Investigations of cellulose polymorphs by 13 C-CP/MAS-NMR spectroscopy and chemometrics. Dissertation Thesis. Royal Institute of Technology, Stockholm, Sweden.Google Scholar
  25. Lennholm, H., Wallbäcks, L. and Iversen, T. (1995) A 13C-CP/MAS-NMR-spectroscopic study of the effect of laboratory kraft cooking on cellulose structure. Nord. Pulp Pap. Res. J. 10, 46-50.Google Scholar
  26. Lindgren, T., Edlund, U. and Iversen, T. (1995) A multivariate characterisation of crystal transformations of cellulose. Cellulose 2, 273-288.Google Scholar
  27. Marchessault, R. H., Taylor, M. G. and Winter, W. T. (1990) 13C CP/MAS NMR spectra of poly-β-D(1->4)mannose: mannan. Canadian J. Chem. 68, 1192-1195.Google Scholar
  28. Newman, R. H. and Hemmingson J. A. (1990) Determination of the degree of cellulose crystallinity in wood by carbon-13 nuclear magnetic resonance spectroscopy. Holzforschung 44, 351-355.Google Scholar
  29. Newman, R. H. (1992) Nuclear magnetic resonance study of spatial relationships between chemical components in wood cell walls. Holzforschung 46, 205-210.Google Scholar
  30. Newman, R. H., Hemmingson, J. A. and Suckling, I. D. (1993) Carbon-13 nuclear magnetic resonance studies of kraft pulping. Holzforschung 47, 234-238.Google Scholar
  31. Newman, R. H. and Hemmingson, J. A. (1997) Cellulose cocrystallisation in hornification of kraft pulp, ISWPC, Montreal, Canada, O1-1-O1-4.Google Scholar
  32. Newman, R. H. (1998) Evidence for assignment of 13C NMR signals to cellulose crystallite surfaces in wood, pulp and isolated celluloses. Holzforschung 52, 157-159.Google Scholar
  33. Paci, M., Federici, D., Capitani, D., Perenze, N. and Segre, A. L. (1995) NMR study of paper. Carbohyd. Polym. 26, 289-297.Google Scholar
  34. Page, D. H. (1983a) The origin of the differences between sulphite and kraft pulps. J. Pulp Pap. Sci. 9(1), TR 15-TR 20.Google Scholar
  35. Page, D. H. (1983b) Changes in cellulose structure during pulping. Proceedings International Paper Physics Conference, pp. 63.Google Scholar
  36. Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. (1988) Numerical Recipes, The Art of Scientific Computing, Cambridge, Cambridge University Press.Google Scholar
  37. Revol, J. F., Dietrich, A. and Goring, D. A. I. (1987) Effect of mercerization on the crystallite size and crystallinity index in cellulose from different sources. Canadian J. Chem. 65, 1724-1725.Google Scholar
  38. Rydholm, S. A. (1965) Pulping processes. UK, Wiley.Google Scholar
  39. Scallan, A. M. and Carles, J. E. (1972) The correlation of the water retention value with the fibre saturation point. Svensk Papperstidning 17, 699-703.Google Scholar
  40. Shashilov, A. A., Evstigneev, E. I., Shalimova, T. V. and Zakharov, V. I. (1986) Structural changes in spruce wood cellulose during soda and soda-anthraquinone pulping. Khim. Drev. 7-11.Google Scholar
  41. Smith, B. G., Harris, P. J., Melton, L. D. and Newman, R. H. (1998) Crystalline cellulose in hydrated primary cell walls of three monocotyledons and one dicotyledon. Plant Cell Physiol. 39(7), 711-720.Google Scholar
  42. Stoll, M. and Fengel, D. (1977) Studies on holocellulose and alpha-cellulose from spruce wood using cryo-ultramicrotomy. Part I: Structural changes of the fibre walls during delignification and alkali extraction. Wood Sci. Technol. 11, 265-274.Google Scholar
  43. Teeäär, R., Serimaa, R. and Paalkkari, T. (1987) Crystallinity of cellulose, as determined by CP/MAS NMR and XRD methods. Polym. Bull. 17, 231-237.Google Scholar
  44. Theander, O. and Westerlund, E. A. (1986) Studies on dietary fiber. 3. Improved procedure for analysis of dietary fiber. J. Agric. Food Chem. 34, 330-336.Google Scholar
  45. Wickholm, K., Larsson, P. T. and Iversen, T. (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohyd. Res. 312, 123-129.Google Scholar
  46. Wormald, P., Wickholm, K., Larsson, P. T. and Iversen, T. (1996) Conversions between ordered and disordered cellulose. Effects of mechanical treatment followed by cyclic wetting and drying. Cellulose 3, 1-12.Google Scholar
  47. Yamamoto, H. and Horii, F. (1993) CP/MAS 13C NMR analysis of the transformation induced for Valonia cellulose by annealing at high temperatures. Macromolecules 26, 1313-1317.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Eva-Lena Hult
    • 1
  • Per Tomas Larsson
    • 1
  • Tommy Iversen
    • 1
  1. 1.Swedish Pulp and Paper Research Institute, STFIStockholmSweden

Personalised recommendations