Advertisement

Chromosome Research

, Volume 7, Issue 1, pp 57–64 | Cite as

ZOO-FISH Analysis in a Species of the Order Chiroptera: Glossophaga soricina (Phyllostomidae)

  • Marianne Volleth
  • Christine Klett
  • Antje Kollak
  • Christa Dixkens
  • York Winter
  • Walter Just
  • Walther Vogel
  • Horst Hameister
Article

Abstract

Glossophaga soricina is a flower-visiting bat which lives in the neotropics. The diploid chromosome number is 2n = 32 with a fundamental number of autosomal arms, FN, of 60. G. soricina belongs to the Microchiroptera which have a lower diploid DNA content and a higher AT composition in their DNA compared with other mammals. By ZOO-FISH analysis with human chromosome-specific DNA probes, the human autosomes were found conserved in 41 segments. This is an arrangement similar to other mammals which have been analyzed. Several chromosomal associations already known from ZOO-FISH studies in other species were also present in G. soricina.

Chiroptera chromosomal evolution comparative gene mapping ZOO-FISH 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker RJ, Bass RA (1979) Evolutionary relationships of the Brachyphyllinae to the glossophagine genera Glossophaga and Monophyllus. J Mammal 60: 364-372.CrossRefGoogle Scholar
  2. Baker RJ, Honeycutt RL, Bass RA (1988) Genetics. In: Greenhall AM, Schmidt U, eds. Natural History of Vampire Bats. Boca Raton, Florida: CRC Press, pp. 32-40.Google Scholar
  3. Bielec PE, Gallagher DS, Womack JE, Busbee DL (1998) Homologies between human and dolphin chromosomes detected by heterologous chromosome painting. Cytogenet Cell Genet 81: 18-25.PubMedCrossRefGoogle Scholar
  4. Burton DW, Bickham JW, Genoways HH (1989) Flow-cytometric analyses of nuclear DNA content in four families of neotropical bats. Evolution 43: 756-765.CrossRefGoogle Scholar
  5. Chowdhary BP, Raudsepp T, Frönicke L, Scherthan H (1998) Emerging pattern of comparative genome organization in some mammalian species as revealed by Zoo-FISH. Genome Res 8: 577-589.PubMedGoogle Scholar
  6. Dixkens C, Klett C, Bruch J et al. (1998) ZOO-FISH analysis in insectivores: ‘Evolution extols the virtue of the status quo’. Cytogenet Cell Genet 80: 61-67.PubMedCrossRefGoogle Scholar
  7. Dutrillaux B, Couturier J (1983) The ancestral karyotype of carnivora: comparison with that of platyrrhine monkeys. Cytogenet Cell Genet 35: 200-208.PubMedGoogle Scholar
  8. Edwards JH (1991) The Oxford Grid. Ann Hum Genet 55: 17-31.PubMedGoogle Scholar
  9. Frönicke LJ, Müller-Navia J, Romanakis K, Scherthan H (1997) ZOO-FISH maps of the harbor seal (Phoca vitulina) and the putative ancestral carnivore karyotype. Chromosoma 106: 108-113.PubMedCrossRefGoogle Scholar
  10. Gardner AL (1977) Chromosomal variation in Vampyressa and a review of chromosomal evolution in the Phyllostomidae. Syst Zool 26: 300-318.CrossRefGoogle Scholar
  11. Gibbons A (1992) Evolutionary biology. Is ‘flying primate’ hypothesis headed for a crash landing? Science 256: 86-89.Google Scholar
  12. Haiduk MW, Baker RJ (1982) Cladistical analysis of G-banded chromosomes of nectar feeding bats (Glossophaginae: Phyllostomidae). Syst Zool 31: 252-265.CrossRefGoogle Scholar
  13. Hameister H, Klett C, Bruch J, Dixkens C, Vogel W, Christensen K (1997) Zoo-FISH analysis: the American mink (Mustela vison) closely resembles the cat karyotype. Chrom Res 5: 5-11.PubMedCrossRefGoogle Scholar
  14. Hayes H (1995) Chromosome painting with human chromosome-specific DNA libraries reveals the extent and distribution of conserved segments in bovine chromosomes. Cytogenet Cell Genet 71: 168-174.PubMedGoogle Scholar
  15. Jauch A, Wienberg J, Stanyon R et al. (1992) Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting. Proc Natl Acad Sci USA 89: 8611-8615.PubMedCrossRefGoogle Scholar
  16. Morielle E, Varella-Garcia M (1988) Variability of nucleolus organizer regions in phyllostomid bats. Rev Bras Genet 11: 853-871.Google Scholar
  17. Nadeau JH, Sankoff D (1998) The lengths of undiscovered conserved segments in comparative maps. Mammal Genome 9: 491-495.CrossRefGoogle Scholar
  18. Nadeau JH, Taylor BA (1984) Lengths of chromosomal segments conserved since divergence of man and mouse. Proc Natl Acad Sci USA 81: 814-818.PubMedCrossRefGoogle Scholar
  19. Ohno S (1973) Ancient linkage groups and frozen accidents. Nature 244: 259-262.CrossRefGoogle Scholar
  20. Patton JC, Baker RJ (1978) Chromosomal homology and evolution of phyllostomatoid bats. Syst Zool 27: 449-462.CrossRefGoogle Scholar
  21. Pettigrew JD (1994) Flying DNA. Curr Biol 4: 277-280.PubMedCrossRefGoogle Scholar
  22. Raudsepp T, Frönicke L, Scherthan H, Gustavsson I, Chowdhary BP (1996) ZOO-FISH delineates conserved chromosomal segments in horse and man. Chrom Res 4: 218-225.PubMedCrossRefGoogle Scholar
  23. Rettenberger G, Klett C, Zechner U, Kunz J, Vogel W, Hameister H (1995a) Visualization of the conservation of synteny between humans and pigs by heterologous chromosomal painting. Genomics 26: 372-378.PubMedCrossRefGoogle Scholar
  24. Rettenberger G, Klett C, Zechner U et al. (1995b) ZOO-FISH analysis: cat and human karyotypes closely resemble the putative ancestral mammalian karyotype. Chrom Res 3: 479-486.PubMedCrossRefGoogle Scholar
  25. Richard S, Dutrillaux B (1998) Origin of human chromosome 21 and its consequences: a 50 million-year-old story. Chrom Res 6: 263-268.PubMedCrossRefGoogle Scholar
  26. Scherthan H, Cremer T, Arnason U, Weier H-U, Lima-de-Faria A, Frönicke L (1994) Comparative chromosome painting discloses homologous segments in distantly related mammals. Nature Genet 6: 342-347.PubMedCrossRefGoogle Scholar
  27. Solinas-Toldo S, Lengauer C, Fries R (1995) Comparative genome map of human and cattle. Genomics 27: 489-496.PubMedCrossRefGoogle Scholar
  28. Van Den Bussche RA, Longmire JL, Baker RJ (1995) How bats achieve a small C-value: frequency of repetitive DNA in Macrotus. Mammal Genome 6: 521-525.CrossRefGoogle Scholar
  29. Volleth M (1987) Differences in the location of nucleolus organizer regions in European vespertilionid bats. Cytogenet Cell Genet 44: 186-197.PubMedCrossRefGoogle Scholar
  30. Wakefield MJ, Graves JAM (1996) Comparative maps of vertebrates. Mammal Genome 7: 715-716.CrossRefGoogle Scholar
  31. Wienberg J, Stanyon R, Jauch A, Cremer T (1992) Homologies in human and Macaca fuscata chromosomes revealed by in situ suppresssion hybridization with human chromosome specific DNA libraries. Chromosoma 101: 265-270.PubMedCrossRefGoogle Scholar
  32. Wienberg J, Stanyon R, Nash WG et al. (1997) Conservation of human vs. feline genome organization revealed by reciprocal chromosome painting. Cytogenet Cell Genet 77: 211-217.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Marianne Volleth
    • 1
    • 4
  • Christine Klett
    • 2
  • Antje Kollak
    • 2
  • Christa Dixkens
    • 2
    • 5
  • York Winter
    • 3
  • Walter Just
    • 2
  • Walther Vogel
    • 2
  • Horst Hameister
    • 2
  1. 1.Institut für HumangenetikUniversität Erlangen-NürnbergErlangenGermany and
  2. 2.Abteilung Medizinische GenetikUniversität UlmUlmGermany
  3. 3.Institut für ZoologieUniversität Erlangen-NürnbergErlangenGermany
  4. 4.M.V. Institut für HumangenetikOtto-von-Guericke-UniversitätMagdeburg
  5. 5.C.D. Institut für HumangenetikUniversität GöttingenGöttingen

Personalised recommendations