Advertisement

Cellulose

, Volume 7, Issue 1, pp 3–19 | Cite as

The cellulose system in viscin from mistletoe berries

  • Jun-ichi Azuma
  • Nam-Hun Kim
  • Laurent Heux
  • Roger Vuong
  • Henri Chanzy
Article

Abstract

The cellulose system of the viscous fibrous cellulosic polysaccharide (viscan) in the viscin tissue of the European mistletoe, Viscum album L., was analyzed by chemical and physicochemical techniques including sugar analysis, optical and transmission electron microscopy, X-ray and electron diffraction together with solid state CP/MAS 13C-NMR spectroscopy. The results confirmed that in the elongated thin viscin cells, the cellulose microfibrils (having a diameter of around 3 nm) were tightly coiled with their axes perpendicular to the long axis of the cell. Upon stretching these cells became deformed by more than a hundred fold. In such a deformation, the cellulose microfibrils became unwound to be perfectly aligned along the stretching direction. Based on solid-state CP/MAS 13C-NMR spectroscopic analysis of the viscin tissue, it was found that its cellulose consisted of Iα and Iβ polymorphs in the ratio 1:1.

cellulose Iα/Iβ cellulose microfibrils mistletoe cellulose viscin viscans 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachuber, K. and Frösch, D. (1983) Melamine resins, a new class of water-soluble embedding media for electron microscopy. J. Microsc. 130(1), 1-9.Google Scholar
  2. Barlow, B. A. (1983) Biogeography of Loranthaceae and Viscaceae, In The Biology of Mistletoe. M. Calder and P. Bernhardt, (eds). New York, Academic Press, pp. 19-46.Google Scholar
  3. Blumenkrantz, N. and Asboe-Hansen, G. (1973) New method from quantitative determination of uronic acids. Anal. Biochem. 54, 484-489.Google Scholar
  4. Chanzy, H., Imada, K., Mollard, A., Vuong, R. and Barnoud, F. (1979) Crystallographic aspects of sub-elementary cellulose fibrils occurring in the cell of rose cells cultured in vitro. Protoplasma 100, 303-316.Google Scholar
  5. Dinand, E., Chanzy, H. and Vignon, M. R. (1999) Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocolloids 13, 275-283.Google Scholar
  6. Foster, T. J., Ablett, S., McCann, M. C. and Gidley, M. J. (1996) Mobility-resolved 13CNMR spectroscopy of primary plant cell walls. Biopolymers 39, 51-66.Google Scholar
  7. Gedalovich, E. and Kuijt, J. (1987) An ultrastructural study of the viscin tissue of Phthirusa pyrifolia (H.B.K.) Eichler (Loranthaceae). Protoplasma 137, 145-155.Google Scholar
  8. Gedalovich, E., Kuijt, J. and Carpita, N. C. (1988) Chemical composition of viscin, an adhesive involved in dispersal of the parasite Phoradendron californicum (Viscacea). Phys. Mol. Plant Pathol. 32, 61-76.Google Scholar
  9. Green, J. W. (1963) Nitration with a mixture of nitric acid and acetic anhydride, In Methods in Carbohydrate Chemistry, III: Cellulose (Whistler, R.I., Green, J.W., BeMiller, J.N. and M.L. Wolfrom, eds.) New York: Academic Press, pp. 224-226.Google Scholar
  10. Heux, L., Dinand, E. and Vignon, M. R. (1999) Structural aspects in ultrathin cellulose microfibrils followed by 13C CP-MAS NMR. Carbohydr. Polym. 40, 115-124.Google Scholar
  11. Leontein, K., Lindberg, B. and Lönngren, J. (1978) Assignment of absolute configuration of sugars by g.l.c. of their acetylated glycosides formed from chiral alcohols. Carbohydr. Res. 62, 359-362.Google Scholar
  12. Newman, R. H., Ha, M.-A. and Melton, L. D. (1994) Solid-state 13C NMR investigation of molecular ordering in the cellulose of apple cell walls. J. Agric. Food Chem. 42, 1402-1406.Google Scholar
  13. Preston, R. D. (1962) The sub-microscopic morphology of cellulose. Polymer 3, 511-528.Google Scholar
  14. Reis, D., Vian, B. and Roland, J.-C. (1994) Cellulose-glucuronoxylans and plant cell wall structure. Micron 25, 171-187.Google Scholar
  15. Sallé, G. (1983) Germination and establishment of Viscum album L., in The Biology of Mistletoe, M. Calder and P. Bernhardt (eds). New York, Academic Press, pp. 145-159.Google Scholar
  16. Spurr, A. R. (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 21-43.Google Scholar
  17. Wardrop, A. B. (1949) Micellar organisation in primary cell walls. Nature 164, 366.Google Scholar
  18. Warner, S. B. (1995) Fiber Science. Englewood Cliffs, N.J.: Prentice Hall, pp. 123-201.Google Scholar
  19. Willison, J. H. M. and Abeysekera, R. M. (1989) Helicoidal arrays of cellulose in quince seed epidermis: evidence for cell wall self-assembly in the plant cell periplasm, In Cellulose and Wood: Chemistry and Technology. C. Schuerch (ed.). New York, Wiley, pp. 765-781.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Jun-ichi Azuma
    • 1
  • Nam-Hun Kim
    • 2
  • Laurent Heux
    • 3
    • 4
  • Roger Vuong
    • 3
    • 4
  • Henri Chanzy
    • 3
    • 4
  1. 1.Division of Environmental Science and Technology, Department of Bio-environmental Science, Graduate School of Agricultural ScienceKyoto UniversityKyotoJapan
  2. 2.Department of Wood Science and Technology, College of Forest SciencesKangwon National UniversityChunchonRepublic of Korea
  3. 3.Centre de Recherches sur les Macromolécules VégétalesCERMAV-CNRSGrenoble Cedex 9
  4. 4.Joseph Fourier UniversityGrenobleFrance

Personalised recommendations