Chromosome Research

, Volume 6, Issue 3, pp 219–230 | Cite as

Molecular--cytogenetic characterization of the Vicia faba genome -- heterochromatin differentiation, replication patterns and sequence localization

  • Jorg Fuchs
  • Sabine Strehl
  • Andrea Brandes
  • Dieter Schweizer
  • Ingo Schubert


A comprehensive survey of the molecular--cytogenetic features of the Vicia faba chromosome complement (2n = 12) is given. It includes previous as well as new original data. Various Giemsa, restriction endonuclease and fluorochrome banding patterns, azacytidine-mediated segment extension, replication patterns, lateral A/T asymmetry and sequence localization data for tandemly arranged simple sequence repeats, dispersed repeats and coding sequences as well as histone acetylation patterns are considered. This allows not only to distinguish and characterize telomeres, subtelomeres, centromeres and the NOR, but also the structure of the 5S rRNA gene loci and two main types of interstitial heterochromatin. Additionally, it offers physical landmarks within euchromatic areas. Thus, the field bean genome, exemplified by the reconstructed karyotype ACB, belongs to the cytogenetically best investigated plant genomes.

banding and replication patterns chromosome domains fluorescence in situ hybridization Vicia faba 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angell RR, Jacobs PA (1975) Lateral asymmetry in human constitutive heterochromatin. Chromosoma 51: 301–310.Google Scholar
  2. Baranczewski P, Nehls P, Rieger R, Pich U, Rajewsky MF, Schubert I (1997) Formation and repair of O6-methylguanine in recombination hot spots of plant chromosomes. Environ Mol Mutagenesis 29: 394–399.Google Scholar
  3. Bäumlein H, Boerjan W, Nagy I, Bassüner R, Van Montagu M, Inzé D, Wobus U (1991) A novel seed protein gene from Vicia faba is developmentally regulated in transgenic tobacco and Arabidopsis plants. Mol Gen Genet 225: 459–467.Google Scholar
  4. Belyaev ND, Houben A, Baranczewski P, Schubert I (1997) Histone H4 acetylation in plant heterochromatin is altered during cell cycle. Chromosoma 106: 193–197.Google Scholar
  5. Belyaev ND, Houben A, Baranczewski P, Schubert I (1998) The acetylation patterns of histones H3 and H4 along plant chromosomes are different. Chrom Res 6: 59–63.Google Scholar
  6. Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in angiosperms. Ann Bot 76: 113–176.Google Scholar
  7. Bonaccorsi S, Pimpinelli S, Gatti M (1981) Cytological dissection of sex chromosome heterochromatin of Drosophila hydei. Chromosoma 84: 391–403.Google Scholar
  8. Bostock CJ, Christie S (1976) Analysis of the frequency of sister chromatid exchange in different regions of chromosomes of the Kangaroo rat (Dipodomys ordii). Chromosoma 56: 275–287.Google Scholar
  9. Caspersson T, Zech L, Modest EJ, Foley GE, Wagh U, Simonsson E (1969) Chemical differentiation with fluorescent alkylating agents in Vicia faba metaphase chromosomes. Exp Cell Res 58: 128–140.Google Scholar
  10. Döbel P, Rieger R, Michaelis A (1973) The Giemsa banding patterns of the standard and four reconstructed karyotypes of Vicia faba. Chromosoma 43: 409–422.Google Scholar
  11. Döbel P, Schubert I, Rieger R (1978) Distribution of heterochromatin in a reconstructed karyotype of Vicia faba as identified by banding-and DNA-late replication patterns. Chromosoma 69: 193–209.Google Scholar
  12. Evans HJ (1961) Chromatid aberrations induced by gamma irradiation. I. The structure and frequency of chromatid interchanges in diploid and tetraploid cells of Vicia faba. Genetics 46: 257–275.Google Scholar
  13. Frediani M, Mezzanotte R, Vanni R, Pignone D, Cremonini R (1987) The biochemical and cytological characterization of Vicia faba DNA by means of MboI, AluI and BamHI restriction endonucleases. Theor Appl Genet 75: 46–50.Google Scholar
  14. Fuchs J, Schubert I (1995) Localization of seed protein genes on metaphase chromosomes of Vicia faba via fluorescence in situ hybridization. Chrom Res 3: 94–100.Google Scholar
  15. Fuchs J, Pich U, Meister A, Schubert I (1994a) Differentiation of field bean heterochromatin by in situ hybridization with a repeated FokI sequence. Chrom Res 2: 25–28.Google Scholar
  16. Fuchs J, Joos S, Lichter P, Schubert I (1994b) Localization of vicilin genes on field bean chromosome II by fluorescent in situ hybridization. J Heredity 85: 487–488.Google Scholar
  17. Fucik V, Michaelis A, Rieger R (1970) On the induction of segment extention and chromatid structural changes in Vicia faba chromosomes after treatment with 5-azacytidine and 5-azadeoxycytidine. Mutat Res 9: 599–606.Google Scholar
  18. Galloway SM, Evans HJ (1975) Asymmetrical C-bands and satellite DNA in man. Exp Cell Res 94: 454–459.Google Scholar
  19. Geber G, Schweizer D (1988) Cytochemical heterochromatin differentiation in Sinapis alba (Cruciferae) using a simple air-drying technique for producing chromosome spreads. Plant Syst Evol 158: 97–106.Google Scholar
  20. Greilhuber J (1975) Heterogeneity of heterochromatin in plants: comparison of Hy-and C-bands in Vicia faba. Plant Syst Evol 124: 139–156.Google Scholar
  21. Heim U, Schubert R, Bäumlein H, Wobus U (1989) The legumin gene family: structure and evolutionary implications of Vicia faba B-type genes and pseudogenes. Plant Mol Biol 13: 653–663.Google Scholar
  22. Heitz E (1931) Die Ursache der gesetzmässigen Zahl, Lage, Form und Grösse pflanzlicher Nukleolen. Planta 12: 775–846.Google Scholar
  23. Holmquist GP, Comings DE (1975) Sister chromatid exchange and chromosome organization based on a bromodeoxyuridine Giemsa-C-banding technique (TC-banding). Chromosoma 52: 245–259.Google Scholar
  24. Houben A, Brandes A, Schubert I (1994) The distribution of cDNA sequences on field bean chromosomes. Genome 37: 1065–1067.Google Scholar
  25. Houben A, Guttenbach M, Kreß W, Pich U, Schubert I, Schmid M (1995) Immunostaining and interphase arrangement of field bean kinetochores. Chrom Res 3: 27–31.Google Scholar
  26. Houben A, Belyaev ND, Turner BM, Schubert I (1996a) Differential immunostaining of plant chromosomes by antibodies recognizing acetylated histone H4 variants. Chrom Res 4: 191–194.Google Scholar
  27. Houben A, Brandes A, Pich U, Manteuffel R, Schubert I (1996b) Molecular-cytogenetic characterization of a higher plant centromere/kinetochore complex. Theor Appl Genet 93: 477–484.Google Scholar
  28. Howard A, Pelc SR (1953) Synthesis of desoxyribonucleic acid in normal and irradiated cells and its relation by chromosome breakage. Heredity 6(Suppl.): 261–273.Google Scholar
  29. Kato A, Yakura K, Tanifuji S (1984) Sequence analysis of Vicia faba repeated DNA, the FokI repeat element. Nucleic Acids Res 12: 6415–6426.Google Scholar
  30. Kato H (1979) Preferential occurrence of sister chromatid exchanges at heterochromatin-euchromatin junctions in the wallaby and hamster chromosomes. Chromosoma 74: 307–316.Google Scholar
  31. Kihlman BA, Kronborg D (1975) Sister chromatid exchanges in Vicia faba. 1. Demonstration by a modified fluorescent plus Giemsa (FPG) technique. Chromosoma 51: 1–10.Google Scholar
  32. Knälmann M, Burger E-C (1977) Cytologische Lokalisation von 5S und 18/25S rRNA Genorten in Mitose-Chromosomen von Vicia faba. Chromosoma 61: 177–192.Google Scholar
  33. Lakhotia SC, Roy JK, Kumar M (1979) A study of heterochromatin in Drosophila nasuta by the 5-bromodeoxyuridine-Giemsa staining technique. Chromosoma 72: 249–255.Google Scholar
  34. Latt SA, Davidson RL, Lin MS, Gerald PS (1974) Lateral asymmetry in the fluorescence of human Y chromosomes stained with 33258 Hoechst. Exp Cell Res 87: 425–429.Google Scholar
  35. Lin MS, Davidson RL (1975) Centromeric asymmetry and induction of translocations and sisterchromatid exchanges in mouse chromosomes. Nature 254: 354–356.Google Scholar
  36. Lucretti S, Dolezel J, Schubert I, Fuchs J (1993) Flow karyotyping and sorting of Vicia faba chromosomes. Theor Appl Genet 85: 665–672.Google Scholar
  37. Macas J, Weschke W, Bäumlein H, Pich U, Houben A, Wobus U, Schubert I (1993a) Localization of vicilin genes via polymerase chain reaction on microisolated field bean chromosomes. Plant J 3: 883–886.Google Scholar
  38. Macas J, Dolezel J, Lucretti S, Pich U, Meister A, Fuchs J, Schubert I (1993b) Localisation of seed genes on flow-sorted field bean chromosomes. Chrom Res 1: 107–115.Google Scholar
  39. Maggini F, Cremonini R, Zolfino C, Tucci GF, D'Ovidio R, Delre V, DePace C, Scarascia Mugnozza GT, Cionini PG (1991) Structure and chromosomal localization of DNA sequences related to ribosomal subrepeats in Vicia faba. Chromosoma 100: 229–234.Google Scholar
  40. Michaelis A, Rieger R (1959) Strukturheterozygotie bei Vicia faba. Zuüchter 29: 354–361.Google Scholar
  41. Nemec B (1904) Ueber die Einwirkung des Chloralhydrats auf die Kern-und Zellteilung. Jahrb wiss Bot 39: 645–730.Google Scholar
  42. Panitz R, Schubert I (1985) Eukaryontenchromosomen. In: Bielka H, ed. Molekularbiologie. Fischer: Jena, pp. 113–163.Google Scholar
  43. Pearce SR, Harrison G, Li D, Heslop-Harrison JS, Kumar A, Flavell AJ (1996) The Ty1-copia group of retrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomal localization. Mol Gen Genet 250: 305–315.Google Scholar
  44. Pedersen C, Rasmussen SK, Linde-Laursen I (1996) Genome and chromosome identification in cultivated barley and related species of the Triticeae (Poaceae) by in situ hybridization with the GAA-satellite sequence. Genome 39: 93–104.Google Scholar
  45. Pich U, Houben A, Fuchs J, Meister A, Schubert I (1994) Utility of DNA amplified by degenerate oligonucleotide-primed PCR (DOP-PCR) from the total genome and defined chromosomal regions of field beans. Mol Gen Genet 243: 173–177.Google Scholar
  46. Pich U, Meister A, Macas J, Dolezel J, Lucretti S, Schubert I (1995) Primed in situ labelling facilitates flow sorting of similar sized chromosomes. Plant J 7: 1039–1044.Google Scholar
  47. Read J (1959) Radiation Biology in Vicia faba in Relation to the General Problem. Blackwell: Oxford.Google Scholar
  48. Revell SH (1953) Chromosome breakage by X-rays and radiomimetic substances in Vicia faba. Heredity 6(Suppl.): 107–124.Google Scholar
  49. Rieger R, Michaelis A (1967) Chromosomenmutationen. Gustav Fischer Verlag: Jena.Google Scholar
  50. Scheuermann W, Knälmann M (1975) Localization of ribosomal cistrons in metaphase chromosomes of Vicia faba (L.). Exp Cell Res 90: 463–464.Google Scholar
  51. Schlesier B, Bassüner R, Hai NV, Müntz K (1990) The cDNA derived primary structure of two distinct legumin A subunit precursors from field bean (Vicia faba L.). Nucleic Acids Res 18: 7146.Google Scholar
  52. Schubert I (1990) Restriction endonuclease (re-)banding of plant chromosomes. Caryologia 43: 117–130.Google Scholar
  53. Schubert I (1991) FokI digestion of broad bean chromosomes causes a specific banding pattern. Biol Zentbl 110: 195–198.Google Scholar
  54. Schubert I (1992) Telomeric polymorphism in Vicia faba. Biol Zentbl 111: 164–168.Google Scholar
  55. Schubert I, Rieger R (1979) Asymmetric banding of Vicia faba chromosomes after BrdU incorporation. Chromosoma 70: 385–391.Google Scholar
  56. Schubert I, Rieger R (1991a) Catalogue of chromosomal and morphological mutants of faba bean in the Gatersleben Collection, 1991. FABIS Newsl 28/29: 14–22.Google Scholar
  57. Schubert I, Rieger R (1991b) Characterization of plant chromosomes by means of banding techniques, differential incorporation of base analogues, and in situ hybridization. In: Obe G, Sobti A, eds. The Eukaryotic Chromosome — Structural and Functional Aspects. Springer and Narosa Publ. House: New Delhi. pp 31–46.Google Scholar
  58. Schubert I, Oud JL (1997) There is an upper limit of chromosome size for normal development of an organism. Cell 88: 515–520.Google Scholar
  59. Schubert I, Bäumlein H, Wobus U (1978) In situ hybridization of iodinated 5S and 18/25S rRNA to Vicia faba metaphase chromosomes. Biol Zentbl 97: 129–135.Google Scholar
  60. Schubert I, Anastassova-Kristeva M, Rieger R (1979a) Specificity of NOR-staining in Vicia faba. Exp Cell Res 120: 433–435.Google Scholar
  61. Schubert I, Sturelid S, Döbel P, Rieger R (1979b) Intrachromosomal distribution patterns of mutagen-induced SCEs and chromatid aberrations in reconstructed karyotypes of Vicia faba. Mutat Res 59: 27–38.Google Scholar
  62. Schubert I, Heindorff K, Rieger R, Michaelis A (1986) Prinzipien der chromosomalen Verteilung induzierter Chromatidenaberrationen bei Vicia faba und deren mögliche biologische Bedeutung. Kulturpflanze 34: 21–45.Google Scholar
  63. Schubert I, Dolezel J, Houben A, Scherthan H, Wanner G (1993) Refined examination of plant metaphase chromosome structure at different levels made feasible by new isolation methods. Chromosoma 102: 96–101.Google Scholar
  64. Schubert I, Rieger R, Fuchs J (1995) Alteration of basic chromosome number by fusion-fission cycles. Genome 38: 1289–1292.Google Scholar
  65. Schubert I, Fuchs J, Pich U, Künzel G, Korzun L (1998) Physical sequence mapping in plants. In: Gupta PK, ed. Proceedings of the Symposium on Genetics and Biotechnology in Crop Improvement, Meerut, India (in press).Google Scholar
  66. Schvartzman JB, Cortes F, Lopez-Saez JF (1978) Sister subchromatid exchanged segments and chromosome structure. Exp Cell Res 114: 443–446.Google Scholar
  67. Schwarzacher T, Ambros P, Schweizer D (1980) Application of Giemsa banding to orchid karyotype analysis. Plant Syst Evol 134: 293–297.Google Scholar
  68. Schweizer D (1973a) Differential staining of plant chromosomes with Giemsa. Chromosoma 40: 307–320.Google Scholar
  69. Schweizer D (1973b) Vergleichende Untersuchungen zur Längsdifferenzierung der Chromosomen von Vicia faba L. Verhandl Naturf Ges Basel 83: 1–75.Google Scholar
  70. Schweizer D (1973c) Sister chromatid exchanges and heterochromatin in Vicia faba. Heredity 31: 431–432.Google Scholar
  71. Schweizer D, Strehl S, Hagemann S (1990) Plant repetitive DNA elements and chromosome structure. Chromosomes Today 10: 33–43.Google Scholar
  72. Strehl S (1987) Bänderungsverhalten und Replikationsmuster der mitotischen Chromosomen von Vicia faba (Fabaceae) (Dissertation). Univ. Wien — Formal-und Naturwiss. Fak.: Wien.Google Scholar
  73. Takehisa S, Utsumi S (1973) Visualization of metaphase heterochromatin in Vicia faba by the denaturation-renaturation Giemsa staining method. Experimentia 29: 120–121.Google Scholar
  74. Taylor JH, Woods PS, Hughes WL (1957) The organization and duplication of chromosomes as revealed by autoradiographic studies Tritium-labelled thymidine. Biochemistry 43: 122–127.Google Scholar
  75. Viegas-Pequignot E, Benazzou T, Prod'Homme M, Dutrillaux B (1984) Characterization of a very complex constitutive heterochromatin in two Gerbillus species (Rodentia). Chromosoma 89: 42–47.Google Scholar
  76. Vosa CG, Marchi P (1972a) Quinacrine fluorescence and Giemsa staining in plants. Nature 237: 191.Google Scholar
  77. Vosa CG, Marchi P (1972b) On the quinacrine fluorescence and Giemsa staining patterns of the chromosomes of Vicia faba. G Bot Ital 106: 151–159.Google Scholar
  78. Weschke W, Bassüner R, Hai NV, Czihal A, Bäumlein H, Wobus U (1988) The structure of a Vicia faba vicilin gene. Biochem Physiol Pflanzen 183: 233–242.Google Scholar
  79. Yakura K, Kato A, Tanifuji S (1987) Cytological localization of highly repeated DNA sequences, the FokI sequence family and BamHI sequence families, in Vicia faba chromosomes. Jpn J Genet 62: 325–332.Google Scholar

Copyright information

© Chapman and Hall 1998

Authors and Affiliations

  • Jorg Fuchs
    • 1
  • Sabine Strehl
    • 1
  • Andrea Brandes
    • 2
  • Dieter Schweizer
    • 1
  • Ingo Schubert
    • 2
  1. 1.Institut fur Pflanzengenetik und Kulturpflanzenforschung (IPK)GaterslebenGermany
  2. 2.Institut fur Pflanzengenetik und Kulturpflanzenforschung (IPK)GaterslebenGermany

Personalised recommendations