Chromosome Research

, Volume 8, Issue 5, pp 425–433 | Cite as

Fitness effect analysis of a heterochromatic supernumerary segment in the grasshopper Eyprepocnemis plorans

  • F. Perfectti
  • J. Cabrero
  • M. D. López-León
  • E. Muñoz
  • M. C. Pardo
  • J. P. M. Camacho
Article

Abstract

Several components of fitness were analysed in relation to the presence of a supernumerary chromosome segment (SCS) in two natural populations of the grasshopper Eyprepocnemis plorans, including clutch size, egg fertility, egg and embryo productivity and survivability from embryo to adult, and SCS transmission through males. The results have shown the absence of a significant relationship between SCS presence and these fitness components, with the single exception of egg fertility which decreases significantly in SCS females with mating shortage. This fertility decrease is thus expected to be relevant for the population dynamics of the SCS only in low-density populations, those in which it is difficult for females to find a male to copulate with before each egg-batch is ready to be laid. The analysis of the SCS transmission through males showed no significant differences between expected and observed SCS frequencies. The SCS polymorphism seems to be at a status close to neutrality in respect to fitness, but its slight disadvantage in transmission through females carrying B chromosomes predicts that the polymorphism should tend to disappear, unless SCS recurrent amplification, or another undiscovered force, counteracts this tendency.

Eyprepocnemis plorans fitness heterochromatin population dynamic supernumerary chromosome segment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainsworth CC, Parker JS, Horton DM (1983) Chromosome variation and evolution in Scilla autumnalis. Kew Chrom Conf 2: 261–268.Google Scholar
  2. Cabrero J (1985) Estudios citogenéticos en saltamontes de la subfamilia gomphocerinae: heterocromatina, reordenaciones cromosómicas y actividad nucleolar. PhD Thesis, Universidad de Granada, Spain.Google Scholar
  3. Cabrero J, Navas-Castillo J, Camacho JPM (1986) Effects of supernumerary chromosome segments on the activity of nucleolar organiser regions in the grasshopper Chorthippus binotatus. Chromosoma 93: 375–380.CrossRefGoogle Scholar
  4. Cabrero J, López-León MD, Camacho JPM (1998) Ribosomal DNA in a supernumerary chromosome segment of the grass-hopper Oedipoda fuscocincta confirms its origin by translocation. Hereditas 129: 15–18.CrossRefGoogle Scholar
  5. Cabrero J, López-León MD, Bakkali M, Camacho JPM(1999) Common origin of B chromosome variants in the grass-hopper Eyprepocnemis plorans. Heredity 83: 435–439.PubMedCrossRefGoogle Scholar
  6. Camacho JPM (1980) Variabilidad cromosómica en poblaciones naturales de Tettigonioidea, Pamphagoidea y Acridoidea. PhD. Thesis, Universidad de Granada, Spain.Google Scholar
  7. Camacho JPM, Cabrero J (1987) New hypotheses about the origin of supernumerary chromosome segments in grasshoppers. Heredity 58: 341–343.Google Scholar
  8. Camacho JPM, Viseras E, Navas J, Cabrero J (1984) C-heterochromatin content of supernumerary chromosome segments of grasshoppers: detection of an euchromatic extra segment. Heredity 53: 167–175.Google Scholar
  9. Donaldson KM, Karpen GH (1997) Trans-suppression of terminal deficiency-associated position effect variegation in a Drosophila minichromosome. Genetics 145: 325–337.PubMedGoogle Scholar
  10. Dorer DR, Henikoff S (1997) Transgene repeat arrays interact with distant heterochromatin and cause silencing in cis and trans. Genetics 147: 1181–1190.PubMedGoogle Scholar
  11. Flavell RB (1994) Inactivation of gene-expression in plants as a consequence of specific sequence duplication. Proc Nat Acad Sci USA 91: 3490–3496.PubMedCrossRefGoogle Scholar
  12. Garrido-Ramos MA, Jamilena M, de la Herrán R, Ruiz-Rejón C, Camacho JPM, Ruiz-Rejón M (1998) Inheritance and fitness effects of a pericentric inversion and a supernumerary chromosome segment in Muscari comosum (Liliaceae). Heredity 80: 724–731.CrossRefGoogle Scholar
  13. Henriques-Gil N, Arana P (1990) Origin and substitution of B chromosomes in the grasshopper Eyprepocnemis plorans. Evolution 44: 747–753.CrossRefGoogle Scholar
  14. Jamilena M, Martínez F, Garrido-Ramos MA et al. (1995) Inheritance and fitness effects analysis for a euchromatic supernumerary chromosome segment in Scilla autumnalis (Liliaceae). Biol J Linn Soc 118: 249–259.CrossRefGoogle Scholar
  15. John B (1981) Heterochromatin variation in natural populations. Chromosomes Today 7: 128–137.Google Scholar
  16. John B, Appels R, Contreras N (1986) Population cytogenetics of Atractomorpha similis. II. Molecular characterisation of the distal C-band polymorphisms. Chromosoma 94: 45–58.CrossRefGoogle Scholar
  17. López-León MD, Cabrero J, Camacho JPM (1991) Meiotic drive against an autosomal supernumerary segment pro-moted by the presence of a B chromosome in females of the grasshopper Eyprepocnemis plorans. Chromosoma 100: 282–287.CrossRefGoogle Scholar
  18. López-León MD, Cabrero J, Camacho JPM (1992a) Male and female segregation distortion for heterochromatic supernumerary segments on the S8 chromosome of the grasshopper Chorthippus jacobsi. Chromosoma 101: 511–516.PubMedCrossRefGoogle Scholar
  19. López-León MD, Cabrero J, Camacho JPM, Cano MI, Santos JL (1992b) A widespread B chromosome polymorphism maintained without apparent drive. Evolution 46: 529–539.CrossRefGoogle Scholar
  20. López-León MD, Cabrero J, Pardo MC, Viseras E, Camacho JPM (1993) Paternity displacement in the grasshopper Eyprepocnemis plorans. Heredity 71: 539–545.Google Scholar
  21. López-León MD, Neves N, Schwarzacher T, Heslop-Harrison JS, Hewitt GM, Camacho JPM (1994a) Possible origin of a B chromosome deduced from its DNA composition using double FISH technique. Chromosome Res 2: 87–92.PubMedCrossRefGoogle Scholar
  22. López-León MD, Pardo MC, Cabrero J, Camacho JPM (1994b) Undertransmission of a supernumerary chromosome segment through heterozygous females possessing B chromosomes in the grasshopper Eyprepocnemis plorans. Genome 37: 705–709.Google Scholar
  23. López-León MD, Martín-Alganza A, Pardo MC, Cabrero J, Camacho JPM (1995) Temporal frequency stability and absence of effects on mating behaviour for an autosomal supernumerary segment in two natural populations of the grasshopper Eyprepocnemis plorans. Genome 38: 320–324.Google Scholar
  24. Muñoz E, Perfectti F, Martín-Alganza A, Camacho JPM (1998) Parallel effects of a B chromosome and a mite that decrease female fitness in the grasshopper Eyprepocnemis plorans. Proc R Soc Lond B 265: 1903–1909.CrossRefGoogle Scholar
  25. Navas-Castillo J, Cabrero J, Camacho JPM (1985) Chiasma redistribution in bivalents carrying supernumerary chromosome segments in grasshoppers. Heredity 55: 245–248.Google Scholar
  26. Navas-Castillo J, Cabrero J, Camacho JPM (1987) Chiasma redistribution in presence of supernumerary chromosome segments in grashopper: dependence of the size of the extra segment. Heredity 58: 409–412.Google Scholar
  27. Pardo MC, López-León MD, Hewitt GM, Camacho JPM (1995) Female fitness is increased by frequent mating in grasshoppers. Heredity 74: 654–660.Google Scholar
  28. Rhoades MM (1978) Genetic effects of heterochromatin in maize. In: Walker DB, ed. Maize Breeding and Genetics. New York: Wiley Interscience, pp 641–671.Google Scholar
  29. Rossignol JL, Faugeron G (1995) MIP-An epigenetic gene silencing process in Ascobolus immersus. Curr Topics Microbiol Inmunol 197: 179–191.Google Scholar
  30. Ruiz-Rejón C, Lozano R, Ortega-Nieto FJ, Ruiz-Rejón M (1988) B chromosomes and supernumerary chromosome segments in Liliaceae: selfish or heterotic DNA? Kew Chrom Conf 3: 141–149.Google Scholar
  31. Schroeter G, Hewitt GM (1974) The effects of supernumerary chromatin in three species of grasshopper. Can J Genet Cytol 16: 285–296.Google Scholar
  32. de la Torre J, López-Fernández C, Nichols R, Gosálvez J (1986) Heterochromatin readjusting chiasma distribution in two species of the genus Arcyptera: The effects amomg individuals and populations. Heredity 56: 177–184.Google Scholar
  33. Weiler KS, Wakimoto BT (1995) Heterochromatin and gene-expression in Drosophila. Ann Rev Genet 29: 577–605.PubMedCrossRefGoogle Scholar
  34. Westerman M (1975) Population cytology of the genus Phaulacridium III. P. marginale (Walker); polymorphisms for extra heterochromatin. Heredity 34: 11–27.PubMedGoogle Scholar
  35. Wilby AS, Parker JS (1988) The supernumerary segment system of Rumex acetosa. Heredity 60: 109–117.Google Scholar
  36. Wu CI, True JR, Johnson N(1989) Fitness reduction associated with the deletion of a satellite DNA array. Nature 341: 248–251.PubMedCrossRefGoogle Scholar
  37. Zurita S, Cabrero J, López-León MD, Camacho JPM (1998) Polymorphism regeneration for a neutralized selfish B chromosome. Evolution 52: 274–277.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • F. Perfectti
    • 1
  • J. Cabrero
    • 1
  • M. D. López-León
    • 1
  • E. Muñoz
    • 1
  • M. C. Pardo
    • 1
  • J. P. M. Camacho
    • 2
  1. 1.Departamento de GenéticaUniversidad de GranadaGranadaSpain
  2. 2.Departamento de GenéticaUniversidad de GranadaGranadaSpain.

Personalised recommendations