Biometals

, Volume 13, Issue 4, pp 325–331 | Cite as

Superparamagnetic Magnetite in the Upper Beak Tissue of Homing Pigeons

  • Marianne Hanzlik
  • Christoph Heunemann
  • Elke Holtkamp-Rötzler
  • Michael Winklhofer
  • Nikolai Petersen
  • Gerta Fleissner

Abstract

Homing pigeons have been subject of various studies trying to detect magnetic material which might be involved in magnetic field perception. Here we focus on the upper-beak skin of homing pigeons, a region that has previously been shown to contain nerves sensitive to changes of the ambient magnetic field. We localized Fe3+ concentrations in the subcutis and identified the material by transmission electronmicroscopy (TEM) as aggregates of magnetite nanocrystals (with grain sizes between 1 and 5 nm). The particles form clusters of 1–3 μm diameter, which are arranged in distinct coherent elongated structures, associated with nervous tissue and located between fat cells. Complementary low-temperature magnetic measurements confirm the microscopic observations of fine-grained superparamagnetic particles in the tissue. Neither electron-microscopic nor magnetic measurements revealed any single-domain magnetite in the upper-beak skin tissue.

homing pigeon magnetoreception SAED analysis SQUID magnetometer ZFC-FC curves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beason RC, Semm P. 1987 Magnetic responses of the trigeminal nerve system of the bobolink (Dolichonyx oryzivorous). Neurosci Lett 80, 229.Google Scholar
  2. Blakemore RP. 1975 Magnetotactic bacteria. Science 190, 377–379.Google Scholar
  3. Blanco-Mantecón M, O'Grady K. 1999 Grain size and blocking dis-tributions in fine particle iron oxide nanoparticles. J Magn Magn Mater 203, 50–53.Google Scholar
  4. Bubien-Waluszewska A. 1981 The cranial nerves. In: Form and Function in BirdsNew York: Academic Press; 385–438.Google Scholar
  5. Butler RF, Banerjee SK. 1975 Theoretical single-domain grain size range in magnetite and titanomagnetite. J Geophys Res 80, 4049–4058.Google Scholar
  6. Holtkamp-Rötzler E. 1998 Verhaltensphysiologische, 6ysikalische und neuroanatomische Befunde zur Magnetfeldperzeption bei Brieftauben (Columba livia). Inaugural-Dissertation (Fachbere-ich Biologie, Universität Frankfurt) 177 pp.Google Scholar
  7. Ising G. 1945 Die physikalische Möglichkeit eines tierischen Orien-tierungssinnes auf der Basis der Erdrotation. Ark Mat Astron Fys 32A, 1–23.Google Scholar
  8. Lowenstamm HA. 1962 Magnetite in denticle capping in recent chitons (Polyplacophora). Geol Soc Am Bull 73, 435–438.Google Scholar
  9. Luo Nagel SR, Rosenbaum TF, Rosensweig RE. 1991 Dipole interactions with random anisotropy in a frozen ferrofluid. Phys Rev Lett 67, 2721–2725.Google Scholar
  10. Presti D, Pettigrew JD. 1980 Ferromagnetic coupling to muscle re-ceptors as a basis for geomagnetic field sensitivity in animals. Nature 285, 99–1011Google Scholar
  11. Sappey R, Vincent E, Hadacek N, Chaput F, Boilot JP, Zins D. 1997 Nonmonotonic field dependence of the zero-field cooled magne-tization peak in some systems of magnetic nanoparticles. Phys Rev B56, 14551–14559.Google Scholar
  12. Semm P, Nohr D, Demaine C, Wiltschko W. 1984 Neural basis of the magnetic compass: interactions of visual, magnetic and vestibular inputs in the pigeon's brain. J Comp Physiol A155, 283–288.Google Scholar
  13. Tanka Y, Berschauer JA. 1969 Application of the Pearl's method for iron staining to se1ions embedded in epoxy resin. Stain Technol 44, 255–256.Google Scholar
  14. Walcott C, Gould JL, Kirschvink JL. 1979 Pigeons have magnets. Science 205, 1027–1029.Google Scholar
  15. Walker MM, Diebel CE, Haugh CV, Pankhurst PM, Montgomery JC, Green CR. 1997 Structure and function of the vertebrate magnetic sense. Nature 390, 371–376.Google Scholar
  16. Wiltschko R, Wilschko W. 1995 Magnetic Orientation in Animals. Berlin: Springer-Verlag.Google Scholar
  17. Winklhofer M, Fabian K, Heider F. 1997 Magnetic blocking tem-peratures of magnetite calculated with a three-dimensional mi-cromagnetic model. J Geophys Res B102, 22, 695–22.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Marianne Hanzlik
    • 1
  • Christoph Heunemann
    • 1
  • Elke Holtkamp-Rötzler
    • 2
  • Michael Winklhofer
    • 1
  • Nikolai Petersen
    • 1
  • Gerta Fleissner
    • 2
  1. 1.Institut für Allgemeine und Angewandte GeophysikLudwig-Maximilians-UniversitätMunichGermany
  2. 2.Zoologisches InstitutJohann-Wolfgang-Goethe-UniversitätFrankfurt a. M.Germany

Personalised recommendations