Chromosome Research

, Volume 7, Issue 3, pp 223–233 | Cite as

Localization and Characterization of Nucleotide Sequences From the Canine Y Chromosome

  • Michael Olivier
  • Matthew Breen
  • Matthew M. Binns
  • George LustEmail author


We previously reported the identification of a male-specific 658-bp DNA sequence in dogs. We used a specific primer pair designed for PCR amplification of this fragment with DNA samples from 238 dogs, 6 dingoes and 12 wolves. All 133 male samples amplified the 658-bp sequence, whereas all female samples did not. The sequence was not amplified from male DNA samples representing other wild canids (jackals, coyotes, foxes). A lambda phage was isolated from a canine male genomic library that contained an insert of approximately 15 kb of canine genomic DNA, including the male- specific 658-bp sequence. This lambda phage was used in fluorescence in-situ hybridization experiments. It hybridized to the canine Y chromosome together with a lambda clone containing a segment of the SRY gene and a cosmid clone containing a portion of the pseudoautosomal region. The male-specific 658-bp sequence was located at the end opposite to the pseudoautosomal region while the SRY gene sequence hybridized near the centromere.

Additionally, two (CA)-repeat sequences were identified in the lambda clone that contained the 658-bp sequence. Specific primer pairs were designed to amplify each of the repeats. Primer pair MS34 amplified three different alleles from 13 unrelated canine male DNA samples with a PIC value of 0.40. Primer pair MS41 amplified five alleles with a PIC value of 0.71. These microsatellites are the first reported polymorphic sequences in the dog located in the non-recombining portion of the Y chromosome.

dog FISH microsatellite Y chromosome 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32: 314-331.PubMedGoogle Scholar
  2. Bray-Ward P, Menninger J, Lieman J et al. (1996) Integration of the cytogenetic, genetic, and physical maps of the human genome by FISH imaging of CEPH YAC clones. Genomics 32: 1-14.PubMedCrossRefGoogle Scholar
  3. Breen M, Lindgren G, Binns MM et al. (1997) Genetical and physical assignments of equine microsatellites — first integration of anchored markers in horse genome mapping. Mamm Genome 8: 267-273.PubMedCrossRefGoogle Scholar
  4. Carpio CM, Ambady S, Ponce de Leon FA (1996) Bovine DNA polymorphisms uncovered by RAPD-PCR. Anim Biotechnol 7: 125-134.CrossRefGoogle Scholar
  5. Cheng S (1995) Longer PCR amplifications. In: Innis MA, Gelfand DH, Sninsky JJ, eds. PCR Strategies. San Diego, CA, USA: Academic Press, pp. 313-324.Google Scholar
  6. Cheng S, Fockler C, Higuchi R (1994) Efficient amplification of long targets from human genomic DNA and cloned inserts. Proc Natl Acad Sci USA 91: 5695-5699.PubMedCrossRefGoogle Scholar
  7. Cooper G, Amos W, Hoffman D, Rubinsztein DC (1996) Network analysis of human Y microsatellite haplotypes. Hum Mol Genet 5: 1759-1766.PubMedCrossRefGoogle Scholar
  8. Cushwa WT, Dodds KG, Crawford AM, Medrano JF (1996) Identification and genetic mapping of random amplified polymorphic DNA (RAPD) markers to the sheep genome. Mamm Genome 7: 580-585.PubMedCrossRefGoogle Scholar
  9. de Knijff P, Kayser M, Caglia A et al. (1997) Chromosome Y microsatellites: population genetic and evolutionary aspects. Int J Leg Med 110: 134-140.CrossRefGoogle Scholar
  10. Durnam DM, Anders KR, Fisher L, O'Quigley J, Bryant EM, Thomas ED (1989) Analysis of the origin of marrow cells in bone marrow transplant recipients using a Y-chromosome-specific in situ hybridization assay. Blood 74: 2220-2226.PubMedGoogle Scholar
  11. Ellis N, Goodfellow PN (1989) The mammalian pseudoautosomal region. Trends Genet 5: 406-410.PubMedCrossRefGoogle Scholar
  12. Fischer PE, Holmes NG, Dickens HF, Thomas R, Binns MM, Nacheva EP (1996) The application of FISH techniques for physical mapping in the dog (Canis familiaris). Mamm Genome 7: 37-41.PubMedCrossRefGoogle Scholar
  13. Fletcher S, Darragh D, Fan Y, Grounds MD, Fisher CJ, Beilharz MW (1993) Specific cloning of DNA fragments unique to the dog Y chromosome. Genet Anal Tech Applications 10: 77-83.Google Scholar
  14. Freije D, Helms C, Watson MS, Doniskeller H (1992) Identification of a second pseudoautosomal region near the Xq and Yq telomeres. Science 258: 1784-1787.PubMedGoogle Scholar
  15. Glaser B, Grutzner F, Willmann U et al. (1998) Simian Y chromosomes: species-specific rearrangements of DAZ, RBM, and TSPY versus contiguity of PAR and SRY. Mamm Genome 9: 226-231.PubMedCrossRefGoogle Scholar
  16. Gomolka M, Hundrieser J, Nürnberg P, Roewer L, Epplen JT, Epplen C (1994) Selected di-and tetranucleotide microsatellites from chromosomes 7, 12, 14, and Y in various Eurasian populations. Hum Genet 93: 592-596.PubMedCrossRefGoogle Scholar
  17. Gutiérrez-Adán A, Cushwa WT, Anderson GB, Medrano JF (1997) Ovine-specific Y-chromosome RAPD-SCAR marker for embryo sexing. Anim Genet 28: 135-138.PubMedCrossRefGoogle Scholar
  18. Harley VR, Goodfellow PN (1994) The biochemical role of SRY in sex determination. Mol Reprod Dev 39: 184-193.PubMedCrossRefGoogle Scholar
  19. Hillyard AL, Davisson MT, Doolittle DP et al. (1993) Locus map of mouse. In: O'Brien SJ, ed. Genetic Maps. 6th Edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  20. Holmes NG, Mellersh CS, Humphreys SJ et al. (1993) Isolation and characterization of microsatellites from the canine genome. Anim Genet 24: 289-292.PubMedCrossRefGoogle Scholar
  21. Kayser M, Caglia A, Corach D et al. (1997) Evaluation of Y-chromosomal STRs: a multicenter study. Int J Leg Med 110: 125-133.CrossRefGoogle Scholar
  22. Kovar DJ, Rickords LF (1996) Rapid detection of a bovine Y-chromosome specific repeat sequence using fluorescence in-situ hybridization (FISH). Theriogenology 45: 234.CrossRefGoogle Scholar
  23. Langford CF, Fischer PE, Binns MM, Holmes NG, Carter NP (1996) Chromosome-specific paints from a high-resolution flow karyotype of the dog. Chrom Res 4: 115-123.PubMedCrossRefGoogle Scholar
  24. Lingaas F, Sørensen A, Juneja RK et al. (1997) Towards construction of a canine linkage map: establishment of 16 linkage groups. Mamm Genome 8: 218-221.PubMedCrossRefGoogle Scholar
  25. Mellersh CS, Langston AA, Acland GA et al. (1997) A linkage map of the canine genome. Genomics 46: 326-336.PubMedCrossRefGoogle Scholar
  26. Meyers-Wallen VN, Palmer VL, Acland GM, Hershfield B (1995) Sry-negative XX sex reversal in the American Cocker Spaniel dog. Mol Reprod Dev 41: 300-305.PubMedCrossRefGoogle Scholar
  27. Olivier M, Lust G (1998) Two DNA sequences characteristic of the canine Y chromosome. Anim Genet 29: 146-149.PubMedCrossRefGoogle Scholar
  28. Ostrander EA, Mapa FA, Yee M, Rine J (1995) One hundred and one simple sequence repeat-based markers for the canine genome. Mamm Genome 6: 192-195.PubMedCrossRefGoogle Scholar
  29. Page DC, Bieker K, Brown LG et al. (1987) Linkage, physical mapping, and DNA sequence analysis of pseudoautosomal loci on the human X and Y chromosome. Genomics 1: 243-256.PubMedCrossRefGoogle Scholar
  30. Rappold GA (1993) The pseudoautosomal regions of the human sex chromosomes. Hum Genet 92: 315-324.PubMedCrossRefGoogle Scholar
  31. Ried T, Baldini A, Rand TC, Ward DC (1992) Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. Proc Natl Acad Sci USA 89: 1388-1392.PubMedCrossRefGoogle Scholar
  32. Roewer L, Arnemann J, Spurr NK, Grzeschik KH, Epplen JT (1992) Simple repeat sequences on the human Y chromosome are equally polymorphic as their autosomal counterparts. Hum Genet 89: 389-394.PubMedCrossRefGoogle Scholar
  33. Roewer L, Kayser M, Dieltjes P et al. (1996) Analysis of molecular variance (AMOVA) of Y-chromosome-specific microsatellites in two closely related human populations. Hum Mol Genet 5: 1029-1033.PubMedCrossRefGoogle Scholar
  34. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 2nd Edn. Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory.Google Scholar
  35. Switonski M, Reimann N, Bosma AA et al. (1996) Report on the progress of standardization of the G-banded canine (Canis familiaris) karyotype. Chrom Res 4: 306-309.PubMedCrossRefGoogle Scholar
  36. Teale AJ, Wambugu J, Gwalisa PS, Stranzinger G, Bradley D, Kemp SJ (1995) A polymorphism in randomly amplified DNA that differentiates the Y chromosomes of Bos indicus and Bos taurus. Anim Genet 26: 243-248.PubMedGoogle Scholar
  37. Vilà C, Savolainen P, Maldonado JE et al. (1997) Multiple and ancient origins of the domestic dog. Science 276: 1687-1689.PubMedCrossRefGoogle Scholar
  38. Wagner JL, Burnett RC, DeRose SA, Francisco LV, Storb R, Ostrander EA (1996) Histocompatibility testing of dog families with highly polymorphic microsatellite markers. Transplantation 62: 876-877.PubMedGoogle Scholar
  39. White DA, Sweeney MC (1993) Detection of male cells in mixtures containing varying proportions of male and female cells by fluorescence in situ hybridization and G-banding. Cytometry 14: 9-15.PubMedCrossRefGoogle Scholar
  40. Whitfield LS, Hawkins, TL, Goodfellow PN, Sulston J (1995) 41 kilobases of analysed sequence from the pseudoautosomal and sex-determining regions of the short arm of the human Y chromosome. Genomics 27: 306-311.PubMedCrossRefGoogle Scholar
  41. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acid Res 18: 6531-6535.Google Scholar
  42. Yu C, Ostrander EA, Bryant E, Burnett R, Storb R (1994) Use of (CA)n polymorphisms to determine the origin of blood cells after allogeneic canine marrow grafting. Transplantation 58: 701-706.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Michael Olivier
    • 1
    • 3
  • Matthew Breen
    • 2
  • Matthew M. Binns
    • 2
  • George Lust
    • 1
    Email author
  1. 1.James A. Baker Institute for Animal HealthCollege of Veterinary Medicine, Cornell UniversityIthacaUSA and
  2. 2.Centre for Preventive Medicine, Animal Health TrustSuffolkUK
  3. 3.Department of Genetics M314Stanfor University Medical SchoolStanfordUSA

Personalised recommendations