Neuropsychology Review

, Volume 10, Issue 2, pp 115–129 | Cite as

Traumatic Brain Injury as a Risk Factor for Alzheimer's Disease: A Review

  • Tanya C. Lye
  • E. Arthur Shores
Article

Abstract

Accumulating epidemiological evidence implicates traumatic brain injury as a pathogenic agent in the development of Alzheimer's disease (AD). Considering the increase in the prevalence of both traumatic brain injury and AD in recent times, the possibility that brain trauma may provoke the early development of AD has important implications for health service planning, preventative efforts, and medico-legal compensation settlements. This paper evaluates the plausibility of the proposed link between traumatic brain injury and AD, largely by way of exploring a theoretical perspective advanced by Satz (1993) and considering recent contributions from the epidemiological, neuropathological, and biochemical literature that are pertinent to this issue. The literature reviewed provides sufficient support and empirical vindication to give credence to the proposed association between these two neuropsychological entities at the statistical, theoretical, and biological level.

Traumatic brain injury Alzheimer's disease brain reserve capacity threshold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Allsop, D., Haga, S., Bruton, C., Ishii, T., and Roberts, G. (1990). Neurofibrillary tangles in some cases of Dementia Pugilistica share antigens with amyloid ß-protein of Alzheimer's disease. American Journal of Pathology 136: 255–260.Google Scholar
  2. Amaducci, L. A., Fratiglioni, L., Rocca, W. A., Fieschi, C., Livrea, P., Pedone, D., Bracco, L., Lippi, A., Gandolfo, C., Bino, G., Prencipe, M., Bonatti, M. L., Girotti, F., Carella, F., Tavolato, B., Ferla, S., Lenzi, G. L., Carolei, A., Gambi, A., Grigoletto, F., and Schoenberg, B. S. (1986). Risk factors for clinically diagnosed Alzheimer's disease: A case-control study of an Italian population. Neurology 36: 922–931.Google Scholar
  3. Adreasen, N. C., Flaum, M., Swayze, V., O'Leary, D. S., Alliger, R., Cohen, G., Ehrhardt, J., and Yuh, W. T. C. (1993). Intelligence and brain structure in normal individuals. American Journal of Psychiatry 150: 130–134.Google Scholar
  4. Badcock, K. M. (1987). The Head Injury Study at Flinders Medical Centre, Flinders Medical Centre, Adelaide.Google Scholar
  5. Bell, D. S. (1992). Medicolegal Assessment of Head Injury, Charles C. Thomas, Springfield.Google Scholar
  6. Blessed, G., Tomlinson, B. E., and Roth, M. (1968). The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. British Journal of Psychiatry 114: 797–811.Google Scholar
  7. Bonaiuto, S., Rocca, W. A., Lippi, A., Luciani, P., Turtu, F., Cavarzeran, F., and Amaducci, L. (1990). Impact of education and occupation on the prevalence of Alzheimer's disease and multiinfarct dementia in Appignano, Macerata Province, Italy. Neurology 40: S346.Google Scholar
  8. Broe, G. A., Henderson, A. S., Creasey, H., McCusker, E., Korten, A. E., Jorm, A. F., Longley, W., and Anthony, J. C. (1990). A case-control study of Alzheimer's disease in Australia. Neurology 40: 1698–1707.Google Scholar
  9. Calne, D. B., McGeer, E., Eisen, A., and Spencer, P. (1986). Alzheimer's disease, Parkinson's disease and motoneurone disease: Abiotrophic interaction between ageing and environment? The Lancet 2: 1067–1070.Google Scholar
  10. Canadian Study of Health and Aging (CSHA) (1994). The Canadian Study of Health and Aging: Risk factors for Alzheimer's disease in Canada. Neurology 44: 2073–2080.Google Scholar
  11. Chadwick, O., Rutter, M., Brown, G., Shaffer, D., and Traub, M. (1981). A prospective study of children with head injuries: II. Cognitive sequelae. Psychological Medicine 11: 49–61.Google Scholar
  12. Chandra, V., Kokmen, E., Schoenberg, B. S., and Beard, C. M. (1989). Head trauma with loss of consciousness as a risk factor for Alzheimer's disease. Neurology 39: 1576–1578.Google Scholar
  13. Chandra, V., Philipose, V., Bell, P. A., Lazaroff, A., and Schoenberg, B. S. (1987). Case-control study of late onset “probable Alzheimer's disease.” Neurology 37: 1295–1300.Google Scholar
  14. Clinton, J., Ambler, M. W., and Roberts, G. W. (1991). Post-traumatic Alzheimer's disease: Preponderance of a single plaque type. Neuropathology and Applied Neurobiology 17: 69–74.Google Scholar
  15. Cooper, S.-A. (1997). High prevalence of dementia among people with learning disabilities not attributable to Down's syndrome. Psychological Medicine 27: 609–616.Google Scholar
  16. Corsellis, J. A. N., Bruton, C. J., and Freeman-Browne, D. (1973). The aftermath of boxing. Psychological Medicine 3: 270–303.Google Scholar
  17. Coyle, J. T., Price, D. L., and Delong, M. R. (1983). Alzheimer's disease: A disorder of cortical cholingeric innervation. Science 219: 1184–1189.Google Scholar
  18. Cummings, J. L., Vinters, H. V., Cole, G. M., and Khachaturian, Z. S. (1998). Alzheimer's disease: Etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology 51: S2-S17.Google Scholar
  19. Decker, M. W., and McGaugh, J. L. (1991). The role of interactions between the cholinergic system and other neuromodulatory systems in learning and memory. Synapse 7: 151–168.Google Scholar
  20. Dixon, C. E., Ma, X., and Marion, D. W. (1997). Reduced evoked release of acetylcholine in the rodent neocortex following traumatic brain injury. Brain Research 749: 127–130.Google Scholar
  21. Dixon, C. E., Taft, W. C., and Hayes, R. L. (1993). Mechanisms of mild traumatic brain injury. Journal of Head Trauma Rehabilitation 8: 1–12.Google Scholar
  22. Elwood, R.W. (1993). Clinical discriminations and neuropsychological tests: An appeal to Bayes' Theorem. The Clinical Neuropsychologist 7: 224–233.Google Scholar
  23. Esiri, M. M. (1994). Dementia and normal aging: Neuropathology. In Huppert, F. A., Brayne, C., and O'Connor, D. W. (eds.), Dementia and Normal Aging, Cambridge University Press, Cambridge, pp. 385–432.Google Scholar
  24. Fearnside, M. R., and Simpson, D. A. (1997). Epidemiology. In Reilly, P., and Bullock, R. (eds.), Head Injury: Pathophysiology and Management of Severe Closed Injury, Chapman Hall, London, pp. 3–23.Google Scholar
  25. Francis, P. T., Palmer, A. M., Sims, N. R., Bowen, D. M., Davison, A. N., Esiri, M. M., Neary, D., Snowdon, J. S., and Wilcock, G. K. (1985). Neurochemical studies of early-onset Alzheimer's disease. The New England Journal of Medicine 313: 7–11.Google Scholar
  26. Francis, P. T., Palmer, A. M., Snape, M., and Wilcock, G. K. (1999). The cholinergic hypothesis of Alzheimer's disease: A review of progress. Journal of Neurology, Neurosurgery and Psychiatry 66: 137–147.Google Scholar
  27. French, L. R., Schuman, L. M., Mortimer, J. A., Hutton, J. T., Boatman, R. A., and Christians, B. (1985). A case-control study of dementia of the Alzheimer's type. American Journal of Epidemiology 121: 414–421.Google Scholar
  28. Gedye, A., Beattie, B. L., Tuokko, H., Horton, A., and Korsarek, E. (1989). Severe head injury hastens age of onset of Alzheimer's disease. Journal of American Geriatric Society 37: 970–973.Google Scholar
  29. Glassman, R. B. (1987). An hypothesis about redundancy and reliability in the brains of higher species: Analogies with genes, internal organs, and engineering systems. Neuroscience and Biobehavioural Reviews 11: 275–285.Google Scholar
  30. Glassman, R. B., and Smith, A. (1988). Neural spare capacity and the concept of diaschisis. In Finger, S., LeVere, T. E., Almli, C. R., and Stein, D. G. (eds.), Brain Injury and Recovery: Theoretical and Controversial Issues, Plenum Press, New York, pp. 45–69.Google Scholar
  31. Graves, A. B., White, E., Koepsell, T. D., Reifler, B. V., van Belle, G., Larson, E. B., and Raskind, M. (1990). The association between head trauma and Alzheimer's disease. American Journal of Epidemiology 131: 491–501.Google Scholar
  32. Growdon, J. H. (1998). Apolipoprotein E and Alzheimer's disease. Archives of Neurology 55: 1053–1054.Google Scholar
  33. Hardy, J. (1997). Amyloid, the presenilins and Alzheimer's disease. Trends in Neurosciences 20: 154–159.Google Scholar
  34. Hayes, R. L., Jenkins, L. W., and Lyeth, B. G. (1992). Neurochemical aspects of head injury: Role of excitatory neurotransmission. Journal of Head Trauma Rehabilitation 7: 16–28.Google Scholar
  35. Henderson, A. S. (1988). The risk factors for Alzheimer's disease: A review and a hypothesis. Acta Psychiatrica Scandinavica 78: 257–275.Google Scholar
  36. Heyman, A., Wilkinson, W. E., Stafford, J. A., Helms, M. J., Sigmon, A. H., and Weinberg, T. (1984). Alzheimer's disease: A study of epidemiological aspects. Annals of Neurology 15: 335–341.Google Scholar
  37. Hill, L. R., Klauber, M. R., Salmon, D. P., Yu, E. S. H., Liu, W. T., Zhang, M., and Katzman, R. (1993). Functional status, education, and the diagnosis of dementia in the Shanghai survey. Neurology 43: 138–145.Google Scholar
  38. Jonker, C., Schmand, B., Lindeboom, J., Havekes, L. M., and Launer, L. J. (1998). Association between Apolipoprotein E ɛ4 and the rate of cognitive decline in community-dwelling elderly individuals with and without dementia. Archives of Neurology 55: 1065–1069.Google Scholar
  39. Jordan, B. D., Relkin, N. R., Ravdin, L. D., Jacobs, A. R., Bennett, A., and Gandy, S. (1997). Apolipoprotein E ɛ4 associated with chronic traumatic brain injury in boxing. Journal of American Medical Association 278: 136–140.Google Scholar
  40. Jorm, A. F. (1990). The Epidemiology of Alzheimer's Disease and Related Disorders, Chapman and Hall, London.Google Scholar
  41. Jorm, A. F., and Henderson, A. S. (1993). The Problem of Dementia in Australia, 3rd Ed., Australian Government Publishing Service, Canberra.Google Scholar
  42. Jorm, A. F., Henderson, A. S., Scott, R., Christensen, H., Mackinnon, A. J., and Korten, A. E. (1994). Does education protect against cognitive impairment? A comparison of the elderly in two Australian cities. International Journal of Geriatric Psychiatry 9: 357–363.Google Scholar
  43. Kanayama, G., Takeda, M., Niigawa, H., Ikura, Y., Tamii, H., Taniguchi, N., Kudo, T., Miyamae, Y., Morihara, T., and Nishimura, T. (1996). The effects of repetitive mild brain injury on cytoskeletal protein and behaviour. Methods and Findings in Experimental and Clinical Pharmacology 18: 105–115.Google Scholar
  44. Katzman, R. (1993). Education and the prevalence of dementia and Alzheimer's disease. Neurology 43: 13–20.Google Scholar
  45. Katzman, R., Aronson, M., Fuld, P., Kawas, C., Brown, T., Morgenstern, H., Frishman, W., Gidez, L., Eder, H., and Ooi, W. L. (1989). Development of dementing illnesses in an 80-year-old volunteer cohort. Annals of Neurology 25: 317–324.Google Scholar
  46. Katzman, R., Terry, R., DeTeresa, R., Brown, T., Davies, P., Fuld, P., Renbing, X., and Peck, A. (1988). Chemical, pathological and neurochemical changes in dementia: A subgroup with preserved mental status and numerous neocortical plaques. Annals of Neurology 23: 138–144.Google Scholar
  47. Klunk, W. E. (1998). Biological markers of Alzheimer's disease. Neurobiology of Aging 19: 145–147.Google Scholar
  48. Kondo, K., Niino, M., and Shido, K. (1994). A case-control study of Alzheimer's disease in Japan-Significance of lifestyles. Dementia 5: 314–326.Google Scholar
  49. Levin, H. S., and Goldstein, F. C. (1995). Closed head injury and Alzheimer's disease: Epidemiologic, neurobehavioural and neuropathologic links. Journal of the International Neuropsychological Society 1: 183.Google Scholar
  50. Lewin, W., Marshall, T. F., and Roberts, A. H. (1979). Long-term outcome after severe head injury. British Medical Journal 2: 1533–1538.Google Scholar
  51. Lilienfeld, A. M., and Lilienfeld, D. E. (1980). Foundations of Epidemiology, 2nd Ed., Oxford University Press, New York.Google Scholar
  52. Lott, I. T. (1992). The neurology of Alzheimer disease in Down syndrome. In Nadel, L., and Epstein, C. J. (eds.), Down Syndrome and Alzheimer Disease, Wiley-Liss, New York, pp. 1–14.Google Scholar
  53. Mayeux, R., Ottman, R., Maestre, G., Ngai, C., Tang, M.-X., Ginsberg, H., Chun, M., Tycko, B., and Shelanski, M. (1995). Synergistic effects of traumatic brain injury and apolipoprotein-ɛ4 in patients with Alzheimer's disease. Neurology 45: 555–557.Google Scholar
  54. Mayeux, R., Ottman, R., Tang, M., Noboa-Bauza, L., Marder, K., Gurland, B., and Stern, Y. (1993). Genetic Susceptibility and head injury as risk factors for Alzheimers disease among communitydwelling elderly persons and their first degree relatives. Annals of Neurology 33: 494–501.Google Scholar
  55. McConway, K. (1994). Investigating causes and evaluating treatments. In McConway, K. (ed.), Studying Health and Disease, Open University Press, United Kingdom, pp. 97–111.Google Scholar
  56. Mendez, M. F., Underwood, K. L., Zander, B. A., Mastri, A. R., Sung, J. H., and Frey, W. H. (1992). Risk factors in Alzheimer's disease: A clinicopathologic study. Neurology 42: 770–775.Google Scholar
  57. Mori, E., Hirono, N., Yamashita, H., Imamura, T., Ikejiri, Y., Ikeda, M., Kitagaki, H., Shimomura, T., and Yoneda, Y. (1997). Premorbid brain size as a determinant of reserve capacity against intellectual decline in Alzheimer's disease. American Journal of Psychiatry 154: 18–24.Google Scholar
  58. Morris, J. C., Storandt, M., McKeel, D. W., Rubin, E. H., Price, J. L., Grant, E. A., and Berg, L. (1996). Cerebral amyloid deposition and diffuse plaques in “normal” aging: Evidence for presymptomatic and very mild Alzheimer's disease. Neurology 46: 707–719.Google Scholar
  59. Mortimer, J. A. (1988). Do psychosocial risk factors contribute to Alzheimer's disease? In Henderson, A. S., and Henderson, J. H. (eds.), Etiology of Dementia of Alzheimer's type, John Wiley, New York, pp. 39–52.Google Scholar
  60. Mortimer, J. A. (1994). What are the risk factors for dementia? In Huppert, F. A., Brayne, C., and O'Connor, D. W. (eds.), Dementia and Normal Aging, Cambridge University Press, Cambridge, pp. 208–229.Google Scholar
  61. Mortimer, J. A. (1995). The epidemiology of Alzheimer's disease: Beyond risk factors. In Iqbal, K., Mortimer, J. A., Winblad, B., and Wisniewski, H. M. (eds.), Research Advances in Alzheimer's Disease and Related Disorders, John Wiley and Sons, New York, pp. 3–13.Google Scholar
  62. Mortimer, J. A. (1997). Brain reserve and the clinical expression of Alzheimer's disease. Geriatrics 52: S50-S53.Google Scholar
  63. Mortimer, J. A., French, L. R., Hutton, J. T., and Schuman, L. M. (1985). Head injury as a risk factor for Alzheimer's disease. Neurology 35: 264–267.Google Scholar
  64. Mortimer, J. A., and Graves, A. B. (1993). Education and other socioeconomic determinants of dementia and Alzheimer's disease. Neurology 43: S39-S44.Google Scholar
  65. Mortimer, J. A., and Pirozzolo, F. J. (1985). Remote effects of head trauma. Developmental Neuropsychology 1: 215–229.Google Scholar
  66. Mortimer, J. A., Van Duijn, C. M., Chandra, V., Fratiglioni, L., Graves, A. B., Heyman, A., Jorm, A. F., Kokmen, E., Kondo, K., Rocca, W. A., Shalat, S. L., Soininen, H., and Hofman, A. (1991). Head trauma as a risk factor for Alzheimer's disease: A collaborative re-analysis of case-control studies. International Journal of Epidemiology 20: S28-S35.Google Scholar
  67. Murakami, N., Yamaki, T., Iwamoto, Y., Sakakibara, T., Kobori, N., Fushiki, S., and Ueda, S. (1998). Experimental brain injury induces expression of amyloid precursor protein, which may be related to neuronal loss in the hippocampus. Journal of Neurotrauma 15: 993–1003.Google Scholar
  68. Murdoch, I., Perry, E. K., Court, J. A., Graham, D. J., and Dewar, D. (1998). Cortical cholinergic dysfunction after human head injury. Journal of Neurotrauma 15: 295–305.Google Scholar
  69. Naugle, R. I. (1987). Catastrophic minor head trauma. Archives of Clinical Neuropsychology 2: 93–100.Google Scholar
  70. Nemetz, P. N., Leibson, C., Naessens, J. M., Beard, M., Kokmen, E., Annegers, J. F., and Kurland, L. T. (1999). Traumatic brain injury and time to onset of Alzheimer's disease: A population-based study. American Journal of Epidemiology 149: 32–40.Google Scholar
  71. Neve, R. L., and Robakis, N. K. (1998). Alzheimer's disease: A re-examination of the amyloid hypothesis. Trends in Neurosciences 21: 15–19.Google Scholar
  72. Nicoll, J. A. R., Roberts, G. W., and Graham, D. I. (1995). Apolipoprotein E e4 allele is associated with deposition of amyloid ß-protein following head injury. Nature Medicine 1: 135–148.Google Scholar
  73. Nicoll, J. A. R., Roberts, G. W., and Graham, D. I. (1996). Amyloid-protein, APOE genotype and head injury. Annals of the New York Academy of Sciences 777: 271–275.Google Scholar
  74. Ott, A., Breteler, M. M. B., van Harskamp, F., Claus, J. J., van der Cammen, T. J. M., Grobbee, D. E., and Hofman, A. (1995). Prevalence of Alzheimer's disease and vascular dementia: Association with education. The Rotterdam Study. British Medical Journal 310: 970–973.Google Scholar
  75. Palmer, A. M., and Gershon, S. (1990). Is the neuronal basis of Alzheimer's disease cholinergic or glutamatergic? FASEB Journal 4: 2745–2752.Google Scholar
  76. Perry, E. K., and Perry, R. H. (1988). Aging and dementia: Neurochemical and neuropathological comparisons. In Henderson, A. S., and Henderson, J. H. (eds.), Etiology of Dementia of the Alzheimer's Type, Wiley and Sons, New York, pp. 213–228.Google Scholar
  77. Perry, E. K., Tomlinson, B. E., Blessed, G., Bergmann, K., Gibson., P. H., and Perry, R. H. (1978). Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. British Medical Journal 2: 1457–1459.Google Scholar
  78. Poirier, J. (1996). Apolipoprotein E in the brain and its role in Alzheimer's disease. Journal of Psychiatry and Neuroscience 21: 128–134.Google Scholar
  79. Poirier, J., Davignon, J., Bouthillier, D., Kogan, S., Bertrand, P., and Gauthier, S. (1993). Apolipoprotein E polymorphism and Alzheimer's disease. Lancet 342: 697–699.Google Scholar
  80. Raby, C. A., Morganti-Kossmann, M. C., Kossmann, T., Stahel, P. F., Watson, M. D., Evans, L. M., Mehta, P. D., Spiegel, K., Kuo, Y., Roher, A. E., and Emmerling, M. R. (1998). Traumatic brain injury increases ɛ-Amyloid peptide 1–42 in cerebrospinal fluid. Journal of Neurochemistry 71: 2505–2509.Google Scholar
  81. Rasmusson, D. X., Brandt, J., Martin, D. B., and Folstein, M. F. (1995). Head injury as a risk factor in Alzheimer's disease. Brain Injury 9: 213–219.Google Scholar
  82. Reyes-Ortiz, C. A. (1997). Delirium, dementia, and brain reserve. Journal of the American Geriatrics Society 45: 778–779.Google Scholar
  83. Roberts, A. H. (1979). Severe Accidental Head Injury, Macmillan Press, London.Google Scholar
  84. Roberts, G. W. (1988). Immunocytochemistry of neurofibrillary tangles in dementia pugilistica and Alzheimer's disease: Evidence for a common genesis. The Lancet ii: 1456–1458.Google Scholar
  85. Roberts, G. W., Allsop, D., and Bruton, C. (1990). The occult aftermath of boxing. Journal of Neurology, Neurosurgery and Psychiatry 53: 373–378.Google Scholar
  86. Roberts, G. W., Gentleman, S. M., Lynch, A., Murray, L., Landon, M., and Graham, D. I. (1994). ß Amyloid protein deposition in the brain after severe closed head injury: Implications for the pathogenesis of Alzheimer's disease. Journal of Neurology, Neurosurgery and Psychiatry 57: 419–425.Google Scholar
  87. Roth, M. (1986). The association of clinical and neurological findings bearing on the classification and aetiology of Alzheimer's disease. British Medical Bulletin 42: 42–50.Google Scholar
  88. Rudelli, R., Strom, J. O., Welch, P. T., and Ambler, M. W. (1982). Posttraumatic premature Alzheimer's disease. Archives of Neurology 39: 570–575.Google Scholar
  89. Salib, E., and Hillier, V. (1997). Head injury and the risk of Alzheimer's disease: A case-control study. International Journal of Geriatric Psychiatry 12: 363–368.Google Scholar
  90. Sandercock, P. (1989). The odds ratio: A useful tool in neurosciences. Journal of Neurology, Neurosurgery and Psychiatry 52: 817–820.Google Scholar
  91. Satz, P. (1993). Brain reserve capacity on symptom onset after brain injury: A formulation and review of evidence for threshold theory. Neuropsychology 7: 273–295.Google Scholar
  92. Schlesselman, J. J. (1982). Case-Control Studies: Design, Conduct, Analysis, Oxford University Press, New York.Google Scholar
  93. Schmand, B., Smit, J. H., Geerlings, M. I., and Lindeboom, J. (1997). The effects of intelligence and education on the development of dementia. A test of the brain reserve hypothesis. Psychological Medicine 27: 1337–1344.Google Scholar
  94. Schmidt, R. H., and Grady, S. (1995). Loss of forebrain cholinergic neurons following fluid percussion injury: Implications for cognitive impairment in closed head injury. Journal of Neurosurgery 83: 496–502.Google Scholar
  95. Schofield, P. W., Logroscino, G., Andrews, H. F., Albert, S., and Stern, Y. (1997a). An association between head circumference and Alzheimer's disease in a population-based study of aging and dementia. Neurology 49: 30–37.Google Scholar
  96. Schofield, P. W., Mosesson, R. E., Stern, Y., and Mayeux, R. (1995). The age at onset of Alzheimer's disease and an intracranial area measurement. Archives of Neurology 52: 95–98.Google Scholar
  97. Schofield, P. W., Tang, M., Marder, K., Bell, K., Dooneief, G., Chun, M., Sano, M., Stern, Y., and Mayeux, R. (1997b). Alzheimer's disease after remote head injury: An incidence study. Journal of Neurology, Neurosurgery and Psychiatry 62: 119–124.Google Scholar
  98. Shuttleworth-Jordan, A. B. (1997). Age and education effects on braindamaged subjects: “Negative” findings revisited. The Clinical Neuropsychologist 11: 205–209.Google Scholar
  99. Slooter, A. J. C., Cruts, M., Kalmijn, S., Hofman, A., Breteler, M. M. B., Van Broeckhoven, C., and van Duijn, C. M. (1998). Risk estimates of dementia by apolipoprotein E genotypes from a populationbased incidence study: The Rotterdam study. Archives of Neurology 55: 964–968.Google Scholar
  100. Snowdon, D. A., Kemper, S. J., Mortimer, J. A., Greiner, L. H., Wekstein, D. R., and Markesbury, W. R. (1996). Linguistic ability in early life and cognitive function and Alzheimer's disease in late life. Journal of American Medical Association 275: 528–532.Google Scholar
  101. Sorenson, S. R. and Kraus, J. F. (1991). Occurrence, severity and outcomes of brain injury. Journal of Head Trauma Rehabilitation 6: 1–10.Google Scholar
  102. Sosin, D. M., Sniezek, J. E., and Waxweiler, R. J. (1995). Trends in death associated with traumatic brain injury, 1979 through 1992. Journal of the American Medical Association 273: 1778–1780.Google Scholar
  103. Spear, J. (1995). Are professional footballers at risk of developing dementia? International Journal of Geriatric Psychiatry 10: 1011–1014.Google Scholar
  104. Stern, Y., Alexander, G. E., Prohovnik, I., and Mayeux, R. (1992). Inverse relationship between education and parietotemporal perfusion deficit in Alzheimer's disease. Annals of Neurology 32: 371–375.Google Scholar
  105. Stern, Y., Alexander, G. E., Prohovnik, I., Stricks, L., Link, B., Lennon, M. C., and Mayeux, R. (1995). Relationship between lifetime occupation and parietal flow: Implications for a reserve against Alzheimer's disease pathology. Neurology 45: 55–60.Google Scholar
  106. Stern, Y., Gurland, B., Tatemichi, T. K., Tang, M. X., Wilder, D., and Mayeux, R. (1994). Influence of education and occupation on the incidence of Alzheimer's disease. Journal of American Medical Association 271: 1004–1010.Google Scholar
  107. Storey, E., and Masters, C. L. (1995). Amyloid, aluminium and the aetiology of Alzheimer's disease. The Medical Journal of Australia 163: 256–259.Google Scholar
  108. Sullivan, P., Petitti, D., and Barbaccia, J. (1987). Head trauma and age of onset of dementia of the Alzheimer's type. Journal of American Medical Association 257: 2289–2290.Google Scholar
  109. Swaab, D. F. (1991). Brain aging and Alzheimer's disease, “Wear and Tear” versus “Use it or lose it.” Neurobiology of Aging 12: 317–324.Google Scholar
  110. Tang, M.-X., Maestre, G., Tsai, W.-Y., Liu, X.-H., Feng, L., Chung, W.-Y., Chun, M., Schofield, P., Stern,Y., Tycko, B., and Mayeux, R. (1996). Effect of age, ethnicity, and head injury on the association between APOE genotypes and Alzheimer's disease. Annals of the New York Academy of Sciences 802: 6–15.Google Scholar
  111. Teasdale, G. M. (1995). Head Injury. Journal of Neurology, Neurosurgery, and Psychiatry 58: 526–539.Google Scholar
  112. Teasdale, G. M., Nicoll, J. A. R., Murray, G., and Fiddes, M. (1997). Association of apolipoprotein E polymorphism with outcome after head injury. Lancet 350: 1069–1071.Google Scholar
  113. Teuber, H. L. (1974). Recovery of function after lesions of the central nervous system: History and prospects. Neurosciences Research Program Bulletin 12: 197–211.Google Scholar
  114. Tomlinson, B. E., Blessed, G., and Roth, M. (1970). Observations on the brains of demented old people. Journal of the Neurological Sciences 11: 205–242.Google Scholar
  115. Uhl, G. R., McKinney, M., and Hedreen, J. (1982). Dementia Pugilistica: Loss of basal forebrain cholinergic neurons and cortical cholinergic markers. Annals of Neurology 12: 99.Google Scholar
  116. Unverzagt, F. W., Hui, S. L., Farlow, M. R., Hall, K. S., and Hendrie, H. C. (1998). Cognitive decline and education in mild dementia. Neurology 50: 181–185.Google Scholar
  117. Whitehouse, P., Kitt, C. A., Hedreen, J. C., Struble, R. G., and Price, D. L. (1985). Neuropathological findings in cholinergic systems in Alzheimer's disease. In Gottfries, C. G. (ed.), Normal Aging, Alzheimer's Disease and Senile Dementia, Universite de Bruxelles, Belgium, pp. 83–91.Google Scholar
  118. Whitehouse, P. J., Lerner, A., and Hedera, P. (1993). Dementia. In Heilman, K. M., and Valenstein, E. (eds.), Clinical Neuropsychology, 3rd Ed., Oxford University Press, New York.Google Scholar
  119. Willerman, L., Schultz, R., Rutledge, J. N., and Bigler, E. D. (1991). In vivo brain size and intelligence. Intelligence 15: 223–228.Google Scholar
  120. Williams, D. B., Annegers, J. F., Kokmen, E., O'Brien, P. C., and Kurland, L. T. (1991). Brain injury and neurologic sequelae: A cohort study of dementia, parkinsonism, and amyotrophic lateral sclerosis. Neurology 41: 1554–1557.Google Scholar
  121. Wisniewski, T., and Frangione, B. (1992). Apolipoprotein E: A pathological chaperone protein in patients with cerebral and systemic amyloid. Neuroscience Letters 135: 235–238.Google Scholar
  122. Yasuda, M., Mori, E., Kitagaki, H., Yamashita, H., Hirono, N., Shimada, K., Maeda, K., and Tanaka, C. (1998). Apolipoprotein E ɛ4 allele and whole brain atrophy in late-onset Alzheimer's disease. American Journal of Psychiatry 155: 779–784.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Tanya C. Lye
    • 1
  • E. Arthur Shores
    • 2
  1. 1.Department of PsychologyMacquarie University
  2. 2.Department of PsychologyMacquarie UniversitySydneyAustralia

Personalised recommendations