Topics in Catalysis

, Volume 13, Issue 3, pp 231–236

Selective liquid phase oxidation using gold catalysts

  • Claudia Bianchi
  • Francesca Porta
  • Laura Prati
  • Michele Rossi
Article

Abstract

Au/C and Au/oxide (Al2O3, TiO2) have been compared in the liquid phase oxidation of glycols and a different trend in reactivity revealed. On the oxides the activity of supported gold increases by decreasing particle size, whereas on carbon maximum activity is achieved with gold particle mean diameter around 7–8 nm. XPS revealed that in the latter case activity depends not only on the size of the gold particle but also on its surface concentration.

gold catalyst selective oxidation carbon support 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Haruta, Catal. Today 51 (1998) 53.Google Scholar
  2. [2]
    D. Thompson, Gold Bull. 31 (1998) 111, and references therein.Google Scholar
  3. [3]
    M. Haruta, N. Yamada, T. Tobayashi and S. Iijima, J. Catal. 151 (1989) 301; G.J. Hutchings, Gold Bull. 29 (1996) 123.CrossRefGoogle Scholar
  4. [4]
    S. Tsubota, D.A. Cunningham, Y. Bando and M. Haruta, in: Preparation of Catalysts VI, Vol. 91, eds. G. Poncelet, J. Martens, B. Delmon, P.A. Jacobs and P. Grange (Elsevier, Amsterdam, 1995) p. 227.Google Scholar
  5. [5]
    M. Okumura, S. Nakamura, S. Tsubota, T. Nakamura, M. Azuma and M. Haruta, Catal. Lett. 51 (1998) 53.CrossRefGoogle Scholar
  6. [6]
    A.I. Kozlov, A.P. Kozlova, H. Liu and Y. Iwasawa, Appl. Catal. A 82 (1999) 9, and references therein.CrossRefGoogle Scholar
  7. [7]
    J.-D. Grunwaldt, C. Kiener, C. Woegerbauer and A. Baiker, J. Catal. 181 (1999) 223.CrossRefGoogle Scholar
  8. [8]
    L. Prati and G. Martra, Gold Bull. 32 (1999) 105.Google Scholar
  9. [9]
    J.-D. Grunwaldt and A. Baiker, J. Phys. Chem. B 103 (1999) 103.CrossRefGoogle Scholar
  10. [10]
    G.R. Bamwenda, S. Tsubota, T. Nakamura and M. Haruta, Catal. Lett. 44 (1997) 83.CrossRefGoogle Scholar
  11. [11]
    L. Prati and M. Rossi, J. Catal. 176 (1998) 552.CrossRefGoogle Scholar
  12. [12]
    B. Nkosi, N.J. Coville, G.J. Hutchings, M.D. Adams, J. Friedl and F. Wagner, J. Catal. 128 (1991) 366.CrossRefGoogle Scholar
  13. [13]
    D.A. Cunningham, W. Vogel, H. Kageyama, S. Tsubota and M. Haruta, J. Catal. 177 (1998) 1; D.A. Cunningham, W. Vogel, R.M. Torres Sanchez, K. Tanaka and M. Haruta, J. Catal. 183 (1999) 24.CrossRefGoogle Scholar
  14. [14]
    G.R. Bamwenda, A. Obuchi, A. Ogata, J. Oi, S. Kushiyama and K. Mizuno, J. Mol. Catal. A 126 (1997) 151.CrossRefGoogle Scholar
  15. [15]
    S. Coluccia, G. Martra, F. Porta, L. Prati and M. Rossi, Catal. Today, in press.Google Scholar
  16. [16]
    R. Datta, in: Encyclopedia of Chemical Technology, 4th Ed., Vol. 13 (Wiley, 1995).Google Scholar
  17. [17]
    L. Prati and M. Rossi, Stud. Surf. Sci. Catal. 110 (1997) 509.CrossRefGoogle Scholar
  18. [18]
    M. Valden, S. Pak, X. Lai and D.W. Goodman, Catal. Lett. 56 (1998) 7; M. Valden, X. Lai and D.W. Goodman, Science 281 (1998) 1647.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Claudia Bianchi
    • 1
  • Francesca Porta
    • 2
  • Laura Prati
    • 2
  • Michele Rossi
    • 2
  1. 1.Dipartimento di Chimica Fisica ed ElettrochimicaMilanoItaly
  2. 2.Dipartimento di Chimica Inorganica Metallorganica e Analitica e Centro CNRUniversità di MilanoMilanoItaly

Personalised recommendations