Advertisement

Russian Journal of Genetics

, Volume 37, Issue 1, pp 64–70 | Cite as

On Some Regularities of Genetic Control of Drosophila Stress Reaction

  • I. Yu. Rauschenbach
  • I. A. Vasenkova
  • N. E. Gruntenko
  • T. M. Khlebodarova
  • M. Zh. Sukhanova
  • L. I. Korochkin
Article

Abstract

The heat-shock response was studied in Drosophila virilis strains with normal and impaired neurohormonal stress reaction. Flies from the latter strain were shown to have the impaired heat-shock response. In this strain, transcription of the heat shock gene hsp83 is reduced and synthesis of all heat shock proteins is suppressed. The neurohormonal stress reaction (status of dopamine, octopamine, and juvenile hormone metabolic systems) was examined in D. melanogaster strains having normal and impaired heat-shock response. The impairment of this response did not prevent the development of the stress reaction: in flies of both strains, the stress exposure resulted in an increase in the dopamine content and in a decrease in the activity of tyrosine decarboxylase (the first enzyme of dopamine synthesis) and in the level of juvenile hormone degradation. However, stress reactivity in mutant individuals differed from that in flies that did not carry stress-related mutations.

Keywords

Dopamine Heat Shock Heat Shock Protein Stress Reaction Juvenile Hormone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Rauschenbach, I.Yu., Neiroendokrinnaya regulyatsiya razvitiya nasekomykh v usloviyakh stressa. Genetiko-fiziologicheskie aspekty (Neuroendocrine Regulation of Insect Development under Stress: Genetic and Physiological Aspects), Novosibirsk: Nauka, 1990, pp. 100-115.Google Scholar
  2. 2.
    Cymborowski, B., Effects of Cold Stress on Endocrine System on Galleria mellonella, Hormones and Metabolism in Insect Stress, Ivanovic, J. and Jankovic-Hladni, M., Eds., Boca Raton: CRS, 1991, pp. 99-114.Google Scholar
  3. 3.
    Chernysh, S.I., Neuroendocrine System in Insect Stress, Hormones and Metabolism in Insect Stress, Ivanovic, J. and Jankovic-Hladni, M., Eds., Boca Raton: CRS, 1991, pp. 69-98.Google Scholar
  4. 4.
    Ivanovic, J.P., Metabolic Response to Stressors, Hormones and Metabolism in Insect Stress, Ivanovic, J. and Jankovic-Hladni, M., Eds., Boca Raton: CRS, 1991, pp. 27-68.Google Scholar
  5. 5.
    Rauschenbach, I.Yu., Changes in Ecdisteroid and Juvenile Hormone under Heat Stress, Hormones and Metabolism in Insect Stress, Ivanovic, J. and Jankovic-Hladni, M., Eds., Boca Raton: CRS, 1991, pp. 115-148.Google Scholar
  6. 6.
    Rauschenbach, I.Yu., Stress Response in Insects: Mechanism, Genetic Control, and Role in Adaptation, Genetika (Moscow), 1997, vol. 33, no. 8, pp. 1110-1118.Google Scholar
  7. 7.
    Rauschenbach, I.Yu., Lukashina, N.S., Maksimovsky, L.F., and Korochkin, L.I., Stress-like Reaction of Drosophila to Adverse Environmental Factors, J. Comp. Physiol. B, 1987, vol. 157, pp. 519-531.Google Scholar
  8. 8.
    Rauschenbach, I.Yu., Shumnaya, L.V., Khlebodarova, T.M., et al., Role of Phenol Oxidases and Tyrosine Hydroxylase in Control of Dopamine Content in Drosophila virilis under Normal Conditions and Heat Stress, J. Insect Physiol., 1995, vol. 41, pp. 279-286.Google Scholar
  9. 9.
    Rauschenbach, I.Yu., Khlebodarova, T.M., Chentsova, N.A., et al., Metabolism of the Juvenile Hormone in Drosophila Adults under Normal Conditions and Heat Stress, J. Insect Physiol., 1995, vol. 41, pp. 179-189.Google Scholar
  10. 10.
    Rauschenbach, I.Yu., Gruntenko, N.E., Khlebodarova, T.M., et al., The Role of the Degradation System of the Juvenile Hormone in the Reproduction of Drosophila under Stress, J. Insect Physiol., 1996, vol. 42, pp. 735-742.Google Scholar
  11. 11.
    Hirashima, A., Sukhanova, M.J., Kuwano, E., and Rauschenbach, I.Yu., Alteration of Biogenic Amines in Drosophila virilis under Stress, Dros. Inf. Serv., 1999, vol. 82, pp. 30-31.Google Scholar
  12. 12.
    Rauschenbach, I.Yu., Shumnaya, L.V., Khlebodarova, T.M., et al., Role of Phenol Oxidases and Tyrosine Hydroxylase in Control of Dopamine Content in Drosophila virilis under Normal Conditions and Heat Stress, J. Insect Physiol., 1995, vol. 41, pp. 279-286.Google Scholar
  13. 13.
    Sukhanova, M.J., Shumnaya, L.V., Grenback, L.G., et al., Tyrosine Decarboxylase and Dopa Decarboxylase in Drosophila virilis under Heat Stress, Biochem. Genet., 1997, vol. 35, pp. 91-103.Google Scholar
  14. 14.
    Sukhanova, M.J., Grenback, L.G., Gruntenko, N.E., et al., Alkaline Phosphatase in Drosophila under Heat Stress, J. Insect Physiol., 1996, vol. 42, pp. 161-165.Google Scholar
  15. 15.
    Rauschenbach, I.Yu., Sukhanova, M.Zh., Hirashima, A., et al., The Role of the Ecdisteroid System in Regulation of Drosophila Reproduction in Stress, Dokl. Akad. Nauk, 2000 (in press).Google Scholar
  16. 16.
    Gruntenko, N.E., Khlebodarova, T.M., Sukhanova, M.J., et al., Prolonged Negative Selection of Drosophila melanogaster for a Character of Adaptive Significance Disturbs Stress Reactivity, Insect Biochem. Mol. Biol., 1999, vol. 29, pp. 445-452.Google Scholar
  17. 17.
    Grenbback, L.G., Khlebodarova, T.M., Gruntenko, N.E., et al., Genetic Control of Stress Response of the System of Juvenile Hormone Metabolism in Drosophila virilis, Genetika (Moscow), 1997, vol. 33, no. 2, pp. 202-204.Google Scholar
  18. 18.
    Sukhanova, M.J., Hirashima, A., Kuwano, E., and Rauschenbach, I.Yu., Genetic Control of Biogenic Amine System in Drosophila under Normal and Stress Conditions, Biochem. Genet., 2000 (in press).Google Scholar
  19. 19.
    Rauschenbach, I.Yu., Lukashina, N.S., and Korochkin, L.I., Genetics of Esterases in Drosophila: VIII. The Gene Controlling the Activity of JH-Esterase in D. virilis, Biochem. Genet., 1984, vol. 22, pp. 65-80.Google Scholar
  20. 20.
    Khlebodarova, T.M., Grenbback, L.G., Gruntenko, N.E., et al., A Gene Controlling the Stress Response of the System of Juvenile Hormone Degradation in Drosophila virilis Adults Maps to Chromosome 6, Genetika (Moscow), 1998, vol. 34, no. 5, pp. 625-628.Google Scholar
  21. 21.
    Arking, R., Temperature-Sensitive Cell-Lethal Mutants of Drosophila: Isolation and Characterization, Genetics, 1975, vol. 80, pp. 519-523.Google Scholar
  22. 22.
    Hammock, B.D. and Sparks, T.C., A Rapid Assay for Insect Juvenile Hormone Esterase Activity, Anal. Biochem., 1977, vol. 82, pp. 573-579.Google Scholar
  23. 23.
    Maickel, P., Cox, R.H., Saillant, J., and Miller, F.P., A Method for the Determination of Serotonin and Noradrenaline in Discrete Areas of Rat Brain, Int. J. Neuropharmacol., 1968, vol. 7, pp. 275-278.Google Scholar
  24. 24.
    McCaman, M.W., McCaman, R.E., and Lees, G.J., Liquid Cation Exchange-a Basis for Sensitive Radiometric Assays for Aromatic Amino Acid Decarboxylase, Anal. Biochem., 1972, vol. 45, pp. 242-252.Google Scholar
  25. 25.
    Robbs, J., Maintenance of Imaginal Discs of Drosophila melanogaster in Chemically Defined Media, J. Cell Biol., 1969, vol. 41, pp. 876-885.Google Scholar
  26. 26.
    Laemmli, U., Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4, Nature, 1970, vol. 227, pp. 680-685.Google Scholar
  27. 27.
    Chomczynski, P. and Sacchi, N., Single-Step Method of RNA Isolation by Acid Guanidine Thiocyanate-Phenol-Chloroform Extraction, Anal. Biochem., 1987, vol. 162, pp. 156-159.Google Scholar
  28. 28.
    Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1982.Google Scholar
  29. 29.
    O'Connor, D. and Lis, J., Two Closely Linked Transcription Units within the 63B Heat Shock Puff Locus of D. melanogaster Display Strikingly Different Regulation, Nucleic Acids Res., 1981, vol. 9, pp. 5075-5092.Google Scholar
  30. 30.
    Feinberg, A.P. and Vogelstein, B., A Technique for Radiolabeling DNA Restriction Endonuclease Fragments to High Specific Activity, Anal. Biochem., 1983, vol. 137, pp. 226-267.Google Scholar
  31. 31.
    Lindquist, S., Autoregulation of the Heat-Shock Response, Translational Regulation of Gene Expression 2, Ilan, J., Ed., New York: Plenum, 1993, pp. 279-320.Google Scholar
  32. 32.
    Evgen'ev, M.B. and Denisenko, O.N., The Effect of the ts Mutation on Expression of the Heat-Shock Genes in Drosophila melanogaster: III. Synthesis of BTSh70-Related Proteins, Genetika (Moscow), 1990, vol. 26, no. 2, pp. 266-271.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • I. Yu. Rauschenbach
    • 1
  • I. A. Vasenkova
    • 1
  • N. E. Gruntenko
    • 1
  • T. M. Khlebodarova
    • 1
  • M. Zh. Sukhanova
    • 1
  • L. I. Korochkin
    • 2
  1. 1.Institute of Cytology and Genetics, Russian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Gene Biology, Russian Academy of SciencesMoscowRussia

Personalised recommendations