Topics in Catalysis

, Volume 13, Issue 1–2, pp 5–19

Metal nanoclusters supported on metal oxide thin films: bridging the materials gap

  • Todd P. St.Clair
  • D. Wayne Goodman
Article

Abstract

Characterization and reactivity studies were performed on model catalysts comprised of metal clusters supported on metal oxide thin films. The thin films are prepared by vaporizing the parent metal onto a refractory metal substrate in an O2 environment. The oxide films are sufficiently conductive via defects and tunneling to the substrate that the use of charged particle spectroscopies does not lead to any adverse charging effects. Numerous characterization techniques demonstrated that both spectroscopically and chemically these thin films are comparable to the analogous bulk metal oxides. Model supported catalysts were subsequently prepared by vapor‐depositing catalytically‐interesting metals onto these thin film oxide supports. This deposition method realizes tight control over cluster size and, therefore, represents an ideal approach to studying size‐dependent chemical and physical properties. Reactivity studies established the validity of the supported systems as models of conventional catalysts. Furthermore, the use of these model catalysts provides a bridge between fundamental studies of single crystal reactivities and applied studies of high‐surface‐area catalyst activities.

model catalysts nanoclusters oxide thin films heterogeneous catalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D.W. Goodman, Surf. Rev. Lett. 2 (1995) 9.CrossRefGoogle Scholar
  2. [2]
    D.W. Goodman, R.D. Kelley, T.E. Madey and J.T. Yates, Jr., J. Catal. 63 (1980) 226.CrossRefGoogle Scholar
  3. [3]
    R.A. Campbell and D.W. Goodman, Rev. Sci. Instrum. 63 (1992) 172.CrossRefGoogle Scholar
  4. [4]
    X. Xu and D.W. Goodman, Appl. Phys. Lett. 61 (1992) 774.CrossRefGoogle Scholar
  5. [5]
    J.-W. He, X. Xu, J.S. Corneille and D.W. Goodman, Surf. Sci. 279 (1992) 119.CrossRefGoogle Scholar
  6. [6]
    X. Xu and D.W. Goodman, Surf. Sci. 282 (1993) 323.CrossRefGoogle Scholar
  7. [7]
    P.J. Chen and D.W. Goodman, Surf. Sci. 312 (1994) L767.CrossRefGoogle Scholar
  8. [8]
    M.-C. Wu and D.W. Goodman, J. Phys. Chem. 98 (1994) 9874.CrossRefGoogle Scholar
  9. [9]
    D.W. Goodman, J. Vac. Sci. Technol. A 14 (1996) 1526.CrossRefGoogle Scholar
  10. [10]
    W.S. Oh, C. Xu, G. Liu, D.Y. Kim and D.W. Goodman, J. Vac. Sci. Technol. A 15 (1997) 1710.CrossRefGoogle Scholar
  11. [11]
    Q. Guo, W.S. Oh and D.W. Goodman, Surf. Sci. 437 (1999) 49.CrossRefGoogle Scholar
  12. [12]
    M.C. Wu, J.S. Corneille, C.A. Estrada, J.W. He and D.W. Goodman, Chem. Phys. Lett. 182 (1991) 472.CrossRefGoogle Scholar
  13. [13]
    M.C. Wu, J.S. Corneille, J.W. He, C.A. Estrada and D.W. Goodman, J. Vac. Sci. Technol. A 10 (1992) 1467.CrossRefGoogle Scholar
  14. [14]
    M.C. Wu, C.A. Estrada, J.S. Corneille and D.W. Goodman, J. Chem. Phys. 96 (1992) 3892.CrossRefGoogle Scholar
  15. [15]
    J.S. Corneille, J.W. He and D.W. Goodman, Surf. Sci. 306 (1994) 269.CrossRefGoogle Scholar
  16. [16]
    C.M. Truong, M.C. Wu and D.W. Goodman, J. Chem. Phys. 97 (1993) 9447.CrossRefGoogle Scholar
  17. [17]
    C.M. Truong, M.C. Wu and D.W. Goodman, J. Am. Chem. Soc. 115 (1993) 3647.CrossRefGoogle Scholar
  18. [18]
    M.C. Wu, C.M. Truong and D.W. Goodman, J. Phys. Chem. 97 (1993) 9425.CrossRefGoogle Scholar
  19. [19]
    M.C. Wu, C.M. Truong and D.W. Goodman, J. Phys. Chem. 97 (1993) 4182.CrossRefGoogle Scholar
  20. [20]
    J.S. Corneille, J.W. He and D.W. Goodman, Surf. Sci. 338 (1995) 221.CrossRefGoogle Scholar
  21. [21]
    X. Xu, S. Vesecky and D.W. Goodman, Science 258 (1992) 788.Google Scholar
  22. [22]
    X. Xu and D.W. Goodman, J. Phys. Chem. 97 (1993) 683.CrossRefGoogle Scholar
  23. [23]
    P.J. Berlowitz, C.H.F. Peden and D.W. Goodman, J. Phys. Chem. 92 (1988) 5213.CrossRefGoogle Scholar
  24. [24]
    K. Coulter, X. Xu and D.W. Goodman, J. Phys. Chem. 98 (1994) 1245.CrossRefGoogle Scholar
  25. [25]
    D.R. Rainer, S.M. Vesecky, M. Koranne, W.S. Oh and D.W. Goodman, J. Catal. 167 (1997) 234.CrossRefGoogle Scholar
  26. [26]
    D.R. Rainer C. Xu, P.M. Holmblad and D.W. Goodman, J. Vac. Sci. Technol. A 15 (1997) 1653.CrossRefGoogle Scholar
  27. [27]
    D.R. Rainer, M. Koranne, S.M. Vesecky and D.W. Goodman, J. Phys. Chem. 101 (1997) 10769.Google Scholar
  28. [28]
    M.-C. Wu and D.W. Goodman, J. Phys. Chem. 98 (1994) 9874.CrossRefGoogle Scholar
  29. [29]
    C. Xu, X. Lai and D.W. Goodman, Faraday Discuss. 105 (1996) 247.CrossRefGoogle Scholar
  30. [30]
    C. Xu, W.S. Oh, G. Liu, D.Y. Kim and D.W. Goodman, J. Vac. Sci. Technol. A 15 (1997) 1261.CrossRefGoogle Scholar
  31. [31]
    L.E. Davis, N.C. MacDonald, P.W. Palmberg, G.E. Riach and R.E. Weber, Handbook of Auger Electron Spectroscopy (Physical Electronics Division, Perkin-Elmer, Eden Prairie, MN, 1976).Google Scholar
  32. [32]
    J.G. Chen, J.E. Crowell and J.T. Yates, Jr., Phys. Rev. B 35 (1987) 5299.CrossRefGoogle Scholar
  33. [33]
    F.L. Battye, J.G. Jenkin, J. Liesegang and R.C.G. Leckey, Phys. Rev. B 9 (1974) 2887.CrossRefGoogle Scholar
  34. [34]
    J.L. Erskine and R.L. Strong, Phys. Rev. B 25 (1982) 5547.CrossRefGoogle Scholar
  35. [35]
    R.L. Strong, B. Firey, F.W. de Wette and J.L. Erskine, Phys. Rev. B 26 (1982) 3483.Google Scholar
  36. [36]
    J.E. Crowell, J.G. Chen and J.T. Yates, Jr., Surf. Sci. 165 (1986) 37.CrossRefGoogle Scholar
  37. [37]
    P.J. Chen, M.L. Colaianni and J.T. Yates, Jr., Phys. Rev.B 41 (1990) 8025.CrossRefGoogle Scholar
  38. [38]
    B.G. Frederick, G. Apai and T.N. Rhodin, J. Electron Spetrosc. Relat. Phenom. 54/55 (1990) 415.CrossRefGoogle Scholar
  39. [39]
    B.G. Frederick, G. Apai and T.N. Rhodin, Phys. Rev. B 44 (1991) 1880.CrossRefGoogle Scholar
  40. [40]
    P.A. Thiry, M. Liehr, J.J. Pireaux and R. Caudano, Phys. Rev. B 29 (1984) 4824.CrossRefGoogle Scholar
  41. [41]
    J.-W. He, C.A. Estrada, J.S. Corneille, M.-C. Wu and D.W. Goodman, Surf. Sci. 261 (1992) 164.CrossRefGoogle Scholar
  42. [42]
    J.-W. He, C.A. Estrada, J.S. Corneille, M.-C. Wu and D.W. Goodman, J. Vac. Sci. Technol. A 10 (1992) 2248.CrossRefGoogle Scholar
  43. [43]
    G. Blyholder, J. Phys. Chem. 68 (1964) 2772.Google Scholar
  44. [44]
    L. Chen, R. Wu, N. Kioussis and Q. Zhang, Chem. Phys. Lett. 290 (1998) 255.CrossRefGoogle Scholar
  45. [45]
    R.T. Wichtendahl, M. Rodriguez-Rodrigo, U. Härtel, H. Kuhlenbeck and H.-J. Freund, Surf. Sci. 423 (1999) 90.CrossRefGoogle Scholar
  46. [46]
    C. Xu and D.W. Goodman, Chem. Phys. Lett. 265 (1997) 341.CrossRefGoogle Scholar
  47. [47]
    M.J. Stirniman, C. Huang, R. Scott Smith, S.A. Joyce and B.D. Kay, J. Chem. Phys. 105 (1996) 1295.CrossRefGoogle Scholar
  48. [48]
    L.E. Davis, Handbook of Auger Electron Spectroscopy, 2nd Ed. (Perkin-Elmer, Eden Prairie, MN).Google Scholar
  49. [49]
    D.R. Rainer, C. Xu and D.W. Goodman, J. Mol. Catal. A 119 (1997) 307.CrossRefGoogle Scholar
  50. [50]
    D.R. Rainer, M.-C. Wu, D.I. Mahon and D.W. Goodman, J. Vac. Sci. Technol. A 14 (1996) 1184.CrossRefGoogle Scholar
  51. [51]
    J.S. Szanyi, W.K. Kuhn and D.W. Goodman, J. Vac. Sci. Technol. A 11 (1993) 1969.CrossRefGoogle Scholar
  52. [52]
    X. Lai, T.P. St.Clair, M. Valden and D.W. Goodman, Prog. Surf. Sci. 59 (1998) 25.CrossRefGoogle Scholar
  53. [53]
    M. Gautier, J.P. Duraud, L. Pham Van and M.J. Guittet, Surf. Sci. 250 (1991) 71.CrossRefGoogle Scholar
  54. [54]
    P.N. First, J.A. Stroscio, R.A. Dragoset, D.T. Pierce and R.J. Celotta, Phys. Rev. Lett. 63 (1989) 1416.CrossRefGoogle Scholar
  55. [55]
    M. Suzuki and T. Fukuda, Phys. Rev. B 44 (1991) 3187.CrossRefGoogle Scholar
  56. [56]
    X. Xu, J. Szanyi, Q. Xu and D.W. Goodman, Catal. Today 21 (1994) 57.CrossRefGoogle Scholar
  57. [57]
    N.W. Cant, P.C. Hicks and B.S. Lennon, J. Catal. 54 (1978) 372.CrossRefGoogle Scholar
  58. [58]
    M. Valden, X. Lai and D.W. Goodman, Science 281 (1998) 1647.CrossRefGoogle Scholar
  59. [59]
    M. Valden, S. Pak, X. Lai and D.W. Goodman, Catal. Lett. 56 (1998) 7.CrossRefGoogle Scholar
  60. [60]
    G.R. Bamwenda, S. Tsubota, T. Nakamura and M. Haruta, Catal. Lett. 44 (1997) 83.CrossRefGoogle Scholar
  61. [61]
    S.H. Oh and C.C. Eickel, J. Catal. 128 (1991) 526.CrossRefGoogle Scholar
  62. [62]
    S.M. Vesecky, P.J. Chen, X. Xu and D.W. Goodman, J. Vac. Sci. Technol. A 13 (1995) 1539.CrossRefGoogle Scholar
  63. [63]
    S.M. Vesecky, J. Vac. Sci. Technol. A 14 (1996) 1457.CrossRefGoogle Scholar
  64. [64]
    B.K. Cho, J. Catal. 131 (1991) 74.CrossRefGoogle Scholar
  65. [65]
    D.W. Goodman, Surf. Sci. Lett. 123 (1982) L679.CrossRefGoogle Scholar
  66. [66]
    J.L. Carter, J.A. Cusumano and J.H. Sinfelt, J. Phys. Chem. 70 (1966) 2257.Google Scholar
  67. [67]
    M.C. Desjonqueres and F. Cyrot-Lackmann, J. Chem. Phys. 64 (1976) 3707.CrossRefGoogle Scholar
  68. [68]
    M. Kiskinova and D.W. Goodman, Surf. Sci. 108 (1981) 64.CrossRefGoogle Scholar
  69. [69]
    D.W. Goodman, Catal. Today 12 (1992) 189.CrossRefGoogle Scholar
  70. [70]
    G.A. Martin, J. Catal. 60 (1979) 452.CrossRefGoogle Scholar
  71. [71]
    K. Coulter and D.W. Goodman, J. Phys. Chem. 98 (1993) 1245.CrossRefGoogle Scholar
  72. [72]
    D.W. Goodman, Annu. Rev. Phys. Chem. 37 (1986) 425.CrossRefGoogle Scholar
  73. [73]
    M.A. Vannice, J. Catal. 44 (1976) 152.CrossRefGoogle Scholar
  74. [74]
    M.A. Vannice, Catal. Rev. Sci. Eng. 14 (1976) 153.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Todd P. St.Clair
    • 1
  • D. Wayne Goodman
    • 1
  1. 1.Department of ChemistryTexas A&M UniversityCollege StationUSA

Personalised recommendations