Tribology Letters

, Volume 10, Issue 1–2, pp 89–96 | Cite as

Shear-induced mechanochromism in polydiacetylene monolayers

  • A.R. Burns
  • R.W. Carpick
  • D.Y. Sasaki
  • J.A. Shelnutt
  • R. Haddad


We use atomic force microscopy to actuate and characterize the nanoscale “mechanochromism” of polydiacetylene monolayers on atomically-flat silicon oxide substrates. We find explicit evidence that the irreversible blue-to-red transformation is caused by shear forces exerted normal to the polydiacetylene polymer backbone. The anisotropic probe-induced transformation is characterized by a significant change in the tilt orientation of the side chains with respect to the surface normal. We discuss preliminary molecular dynamics simulations and electronic structure calculations on twelve-unit polydiacetylene oligomers that allow us to correlate the transformation with bond-angle changes in the conjugated polymer backbone.

atomic force microscopy friction force microscopy friction anisotropy shear force microscopy nanotribology polydiacetylenes LB films molecular mechanics conjugated polymers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Ulman, Introduction to Ultrathin Organic Films from Langmuir–Blodgett to Self-Assembly (Academic Press, New York, 1991).Google Scholar
  2. [2]
    L.H. Dubois and R.G. Nuzzo, Annu. Rev. Phys. Chem. 43 (1992) 437.Google Scholar
  3. [3]
    D. Bloor and R.R. Chance, Polydiacetylenes: Synthesis, Structure, and Electronic Properties (Nijhoff, Dordrecht, 1985).Google Scholar
  4. [4]
    R.A. Nallicheri and M.F. Rubner, Macromolecules 24 (1991) 517.Google Scholar
  5. [5]
    R.W. Carpick, D.Y. Sasaki and A.R. Burns, Langmuir 16 (2000) 1270.Google Scholar
  6. [6]
    R.W. Carpick, T.M. Mayer, D.Y. Sasaki and A.R. Burns, Langmuir 16 (2000) 4639.Google Scholar
  7. [7]
    D.Y. Sasaki, R.W. Carpick and A.R. Burns, J. Colloid Interface Sci. (2000), in press.Google Scholar
  8. [8]
    D.H. Charych, J.O. Nagy, W. Spevak and M.D. Bednarski, Science 261 (1993) 585.Google Scholar
  9. [9]
    S. Okada, S. Peng, W. Spevak and D. Charych, Acc. Chem. Res. 31 (1998) 229.Google Scholar
  10. [10]
    U. Jonas, K. Shah, S. Norvez and D.H. Charych, J. Am. Chem. Soc. 121 (1999) 4580.Google Scholar
  11. [11]
    M.D. Mowery and C.E. Evans, J. Phys. Chem. B 101 (1997) 8513.Google Scholar
  12. [12]
    Z.G. Soos, D.S. Galvao and S. Etemad, Adv. Mater. 6 (1994) 280.Google Scholar
  13. [13]
    F. Garnier, Acc. Chem. Res. 32 (1999) 209.Google Scholar
  14. [14]
    J.-L. Bredas, J. Cornil, D. Beljohnne, D.A. Dos Santos and Z. Shuai, Acc. Chem. Res. 32 (1999) 267.Google Scholar
  15. [15]
    R.W. Carpick, D.Y. Sasaki and A.R. Burns, Tribol. Lett. 7 (1999) 79.Google Scholar
  16. [16]
    H. Eckhardt, D.S. Boudreaux and R.R. Chance, J. Chem. Phys. 85 (1986) 4116.Google Scholar
  17. [17]
    K.S. Schweizer, J. Chem. Phys. 85 (1985) 1156.Google Scholar
  18. [18]
    K.S. Schweizer, J. Chem. Phys. 85 (1985) 1176.Google Scholar
  19. [19]
    V. Dobrosavljevic and R.M. Stratt, Phys. Rev. B 35 (1987) 2781.Google Scholar
  20. [20]
    G. Rossi, R.R. Chance and R. Silbey, J. Chem. Phys. 90 (1989) 7594.Google Scholar
  21. [21]
    M.D. Mowery, S. Kopta, D.F. Ogletree, M. Salmeron and C.E. Evans, Langmuir 15 (1999) 5118.Google Scholar
  22. [22]
    A. Lio, A. Reichert, D.J. Ahn, J.O. Nagy, M. Salmeron and D.H. Charych, Langmuir 13 (1997) 6524.Google Scholar
  23. [23]
    R.F. Fischetti, M. Filipkowski, A.F. Garito and J.K. Blasie, Phys. Rev. B 37 (1988) 4714.Google Scholar
  24. [24]
    J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • A.R. Burns
  • R.W. Carpick
  • D.Y. Sasaki
  • J.A. Shelnutt
  • R. Haddad

There are no affiliations available

Personalised recommendations