Journal of Cluster Science

, Volume 11, Issue 2, pp 391–401 | Cite as

Generation of Supraclusters and Nanoclusters Using Laser Desorption/Ionisation Mass Spectrometry

  • Paul J. Dyson
  • John E. McGrady
  • Meike Reinhold
  • Brian F. G. Johnson
  • J. Scott McIndoe
  • Patrick R. R. Langridge-Smith
Article

Abstract

Laser desorption/ionisation of discrete molecular clusters combined with time-of-flight (TOF) or Fourier-transform ion cyclotron resonance (FTICR) mass spectrometry affords spectra in which extensive higher mass clusters are observed. The size of the largest cluster aggregates (or supraclusters) is of the same order of magnitude as nanoclusters. The spectra obtained using TOF mass spectrometry sometimes exhibit post-source decay fragmentation, depending upon the operational conditions employed during data acquisition, which, although providing useful data on the ligand dissociation dynamics, complicate spectral interpretation. Complementary FTICR mass spectra are free of such features. The identities of the supra/nanoclusters generated from the molecular cluster precursors have not been conclusively established but are mostly coordinatively unsaturated. Density functional molecular orbital calculations have identified the possible structures of the comparatively simple electronically unsaturated system, [Ru3(CO)6], that provides a clue to the aggregation mechanism.

rhodium ruthenium osmium carbonyl cluster mass spectrometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    R. Cotter and C. Fenslau (1987). Chem. Rev. 87, 501.Google Scholar
  2. 2.
    R. Colton, A. DíAgostine, and J. C. Traeger (1995). Mass Spectrom. Rev. 14, 79.Google Scholar
  3. 3.
    B. F. G. Johnson and J. S. McIndoe, Coord. Chem. Rev., in press.Google Scholar
  4. 4.
    W. Henderson, J. S. McIndoe, B. K. Nicholson, and P. J. Dyson (1996). Chem. Commun. 1183.Google Scholar
  5. 5.
    W. Henderson, J. S. McIndoe, B. K. Nicholson, and P. J. Dyson (1998). J. Chem. Soc. Dalton Trans. 519.Google Scholar
  6. 6.
    F. Hillenkamp, M. Karas, R. C. Beavis, and B. T. Chait (1991). Anal. Chem. 63, 1193.Google Scholar
  7. 7.
    M. J. Dale, P. J. Dyson, B. F. G. Johnson, C. M. Martin, P. R. R. Langridge-Smith, and R. Zenobi (1995). J. Chem Soc. Chem. Commun. 1689.Google Scholar
  8. 8.
    M. J. Dale, P. J. Dyson, B. F. G. Johnson, P. R. R. Langridge-Smith, and H. T. Yates (1996). J. Chem. Soc. Dalton Trans. 774.Google Scholar
  9. 9.
    G. Critchley, P. J. Dyson, B. F. G. Johnson, J. S. McIndoe, R. K. O'Reilly, and P. R. R. Langridge-Smith (1999). Organometallics 18, 4090.Google Scholar
  10. 10.
    W. J. Dollard, P. J. Dyson, T. Jackson, B. F. G. Johnson, J. S. McIndoe, and P. R. R. Langridge-Smith (1999). Inorg. Commun. 2, 587.Google Scholar
  11. 11.
    P. J. Dyson, A. K. Hearley, B. F. G. Johnson, J. S. McIndoe, and P. R. R. Langridge-Smith (1999). Inorg. Commun., in press.Google Scholar
  12. 12.
    P. J. Dyson, A. K. Hearley, B. F. G. Johnson, J. S. McIndoe, and P. R. R. Langridge-Smith, Inorg. Chem. 2, 591.Google Scholar
  13. 13.
    For example, see (a) S. Jespersen, P. Chaurand, F. J. C. van Strien, B. Spengler, and J. van der Greef (1999). Anal. Chem. 71, 660. (b) J. Vinh, D. Loyaux, V. Redeker, and J. Rossier (1997). Anal. Chem. 69, 3979.Google Scholar
  14. 14.
    J. Wonka and D. P. Ridge (1984). J. Am. Chem. Soc. 106, 67.Google Scholar
  15. 15.
    D. A. Fredeen and D. H. Russell (1987). J. Am. Chem. Soc. 109, 3903.Google Scholar
  16. 16.
    S. L. Mullen and A. G. Marshall (1988). J. Am. Chem. Soc. 110, 1766.Google Scholar
  17. 17.
    W. K. Meckstroth and D. P. Ridge (1984). Int. J. Mass Spec. and Ion Proc. 106, 4307.Google Scholar
  18. 18.
    J. Lewis and P. R. Raithby (1995). J. Organomet. Chem. 500, 227.Google Scholar
  19. 19.
    M. S. Owen (1988). Polyhedron 7, 253.Google Scholar
  20. 20.
    G. H. Lee, S. H. Huh, and H. I. Jung (1998). J. Mol. Struc. 440, 141.Google Scholar
  21. 21.
    B. F. G. Johnson (1997). J. Chem. Soc. Dalton Trans. 1473.Google Scholar
  22. 22.
    A. Rosa, G. Ricciardi, E. J. Baerends, and D. J. Stufkens (1995). Inorg. Chem. 34, 3425.Google Scholar
  23. 23.
    A. Rosa, G. Ricciardi, E. J. Baerends, and D. J. Stufkens (1996). Inorg. Chem. 35, 2886.Google Scholar
  24. 24.
    T. A. Barckholtz and B. E. Bursten (1998). J. Am. Chem. Soc. 120, 1926.Google Scholar
  25. 25.
    H. Jacobsen and T. Ziegler (1996). J. Am. Chem. Soc. 118, 4631.Google Scholar
  26. 26.
    M. Vitale, M. E. Archer, and B. E. Bursten (1998). Chem. Commun. 179.Google Scholar
  27. 27.
    E. J. Baerends, D. E. Ellis, and P. Ros (1973). Chem. Phys. 2, 41.Google Scholar
  28. 28.
    G. te Velde and E. J. Baerends (1992). J. Comp. Phys. 99, 84.Google Scholar
  29. 29.
    J. Vosko, M. Wilk, and M. Nussair (1980). Can. J. Phys. 58, 1200.Google Scholar
  30. 30.
    A. Becke (1988). Phys. Rev. A 38, 3098.Google Scholar
  31. 31.
    J. P. Perdew (1986). Phys. Rev. B 34, 7406.Google Scholar
  32. 32.
    T. Ziegler and L. Versluis (1988). J. Chem. Phys. 88, 322.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Paul J. Dyson
    • 1
  • John E. McGrady
    • 1
  • Meike Reinhold
    • 1
  • Brian F. G. Johnson
    • 2
  • J. Scott McIndoe
    • 2
  • Patrick R. R. Langridge-Smith
    • 3
  1. 1.Department of ChemistryThe University of York, HeslingtonYorkUK
  2. 2.Department of ChemistryThe University of CambridgeCambridgeUK
  3. 3.Department of ChemistryThe University of EdinburghEdinburghUK

Personalised recommendations