Biodiversity & Conservation

, Volume 9, Issue 6, pp 767–783

Macroinvertebrate community loss as a result of headwater stream acidification in the Vosges Mountains (N-E France)

  • François Guerold
  • Jean-Pierre Boudot
  • Gilles Jacquemin
  • Denis Vein
  • Denis Merlet
  • James Rouiller
Article

Abstract

The relationships between water chemistry and aquatic macroinvertebrate communities of 41 headwater streams were studied in the Vosges Mountains (N-E of France) in an attempt to assess the impact of acidification on macroinvertebrate diversity. The taxa richness of macroinvertebrates decreased drastically in headwater streams which were characterized by low pH, low calcium and high aluminum content. All taxonomic groups were affected, but Molluscans, Crustaceans and Ephemeroptera disappeared totally from strongly acidified streams. Simple indices based on taxa richness such as the coefficient of community loss may provide accurate tools to quickly assess the impact of acidification on macroinvertebrate communities. Despite the reduction of atmospheric SO2 emissions, acidification of freshwater in the Vosges Mountains continues to affect streams which were believed in the past to constitute refuge biotopes for numerous species. Consequently, acidification represents a real threat for numerous invertebrates. This study arises the question of the evolution in the future of headwater stream ecosystems. Urgent decisions and interventions are required to preserve non-acidified streams and to restore impacted ecosystems while awaiting spontaneous recovery.

biodiversity erosion freshwater acidification macroinvertebrates remote areas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almer B, Dickson W, Ekström C, Hörnström E and Miller U (1974) Effect of acidification on Swedish lakes. Ambio 3: 30–36Google Scholar
  2. Arndt RL, Carmichael GR, Streets DG and Bhatti N (1997) Sulfur dioxide emissions and sectorial contributions to sulfur deposition in Asia. Atmospheric Environ. 31: 1553–1572Google Scholar
  3. Blancher PJ and McAuley DG (1987) Influence of wetland acidity on avian breeding success. Trans. North. Am. Wildl. Nat. Res. Conf. 52: 628–635Google Scholar
  4. Bouchard A (1997) Recent lake acidification and recovery trends in southern Quebec, Canada. Water Air Soil Pollut. 94: 225–245Google Scholar
  5. Boudot JP, Merland D, Rouiller J and Maitat O (1994) Validation of an operational procedure for aluminium speciation in soil solutions and surface waters. Sci. Tot. Environ., 158: 237–252Google Scholar
  6. Courtemanch DL and Davies SP (1987) A coefficient of community loss to assess detrimental changes in aquatic communities. Wat. Res. 21(2): 217–222Google Scholar
  7. Dambrine E, Thomas AL, Party JP, Probst A, Boudot JP, Duc M, Dupouey JL, Gégout JC, Guérold F, King D, Landmann G, Maitat O, Nicolaï M, Pollier B and Thimonier A (1998) Acidité des écosystèmes forestiers dans les Vosges gréseuses: distribution, évolution, rôle des dépôts atmosphériques et conséquences biologiques. C. R. Acad. Agric. Fr. 84: 75–94Google Scholar
  8. Degermann E, Henrikson L, Herrmann J, Nyberg P (1995) The effects of liming on aquatic fauna. In: Henrikson L and Brodin YW (eds) Liming of Acidified Surface Waters, pp 221–282. Springer-Verlag, Berlin, HeidelbergGoogle Scholar
  9. Dise N, Ahlf W, Brahmer G, Cosby BJ, Fott J, Hauhs M, Jüttner I, Kreutzer K, Raddum GG and Wright RF (1994) Are chemical and biological changes reversible? In: Steinberg CEW and Wright RF (eds) Acidification of Freshwater Ecosystems. Implication for the Future, pp 375–391. John Wiley, New YorkGoogle Scholar
  10. Driscoll CT, Lehtinen MD and Sullivan TJ (1994) Modelling the acid-base chemistry of organic solutes in Adirondack, New-York, lakes. Water Resour. Res. 30(2): 297–306Google Scholar
  11. Engblom E and Lingbell PE (1984) The mapping of short-term acidification with the help of biological indicators. Institute of Freshwater Research, Drottingholm, report 61: 60–68Google Scholar
  12. Fjellheim A and Raddum GG (1992) Recovery of acid-sensitive species of Ephemeroptera, Plecoptera and Trichoptera in River Audna after liming. Environ. Pollut. 78: 173–178Google Scholar
  13. Friberg F, Otto C and Svensson B (1990) Effect of acidification on the dynamics of allochtonous leaf material and benthic invertebrate communities in running water. In: Drablos D and Tollan A (eds) Proc. Inter. Conf. on the Ecological Impact of Acid Precipitations, SNSF Project, Oslo, Norway: 304–305Google Scholar
  14. Glooschenko V, Downes C, Frank R, Braun HE, Addison EM and Hickie J (1988) Cadmium levels in Ontario moose and deer in relation to soil sensitivity to acid precipitation. Sci. Total Environ. 71: 173–186Google Scholar
  15. Grahn O (1986) Vegetation structure and primary production in acidified lakes in southwestern Sweden. Experimentia 42: 465–470Google Scholar
  16. Guérold F, Vein D, Jacquemin G and Moreteau JC (1993) Impact de l'acidification des cours d'eau vosgiens sur la biodiversité de la macrofaune benthique. C. R. Acad. Sci. Paris., Sciences de la vie 316: 1388–1392Google Scholar
  17. Guérold F, Boudot JP, Merlet D, Rouiller J, Vein D and Jacquemin G (1997) Evaluation de l'état d'acidi-fication des cours d'eau du département des Vosges. Conseil Général des Vosges, convention No 14/95 C. 55pGoogle Scholar
  18. Guérold F, Vein D and Jacquemin G (1991) Les peuplements d'Ephémèroptères, de Plécoptères et de Trichoptères des ruisseaux acides et non acides du massif vosgien: première approche. Rev. Sci. eau 4: 299–314Google Scholar
  19. Guérold F, Vein D, Jacquemin G and Moreteau JC (1993) Impact de l'acidification des ruis-seaux vosgiens sur la biodiversité de la macrofaune benthique. C. R. Acad. Sci., Paris, Sci. Vie 316: 1388–1392Google Scholar
  20. Guérold F, Vein D, Jacquemin G and Pihan JC (1995) The macroinvertebrate communities of streams draining a small granitic catchment exposed to acidic precipitations (Vosges Mountains, Northeastern France). Hydrobiologia 300/301: 141–148Google Scholar
  21. Guérold F, Vein D, Jacquemin G and Pihan JC (1995) The macroinvertebrates communities of streams draining a small granitic catchment exposed to acidic precipitations (Vosges Mountains, Northeastern France). Hydrobiologia 300/301: 141–148Google Scholar
  22. Harvey HH, Dillon PJ, Kramer JR, Pierce RC and Welpdale DM (1981) Acidification in the Canadian environment. Scientific criteria for an assessment of the effects of acidic deposition on aquatic ecosystems. National Research Council of Canada Publication 18475: 1–369Google Scholar
  23. Hedin LO, Granat L, Likens GE, Buishand TA, Galloway JN, Butler TJ and Rhode H (1994) Steep declines in atmospheric base cations in regions of Europe and North America. Nature 367: 351–354Google Scholar
  24. Henrikson L and Brodin YW (1995) Liming of surface waters in Sweden-a synthesis. In: Henrikson L and Brodin YW(eds) Liming of Acidified Surface Waters, pp 1–44. Springer-Verlag Berlin, HeidelbergGoogle Scholar
  25. Jaccard P (1912) The distribution of flora in the alpine zone. New Phytologist 11: 37–50Google Scholar
  26. Johannessen M, Skarveit A and Wright RF (1980) Streamwater chemistry before, during and after snowmelt. Proc. Internat. Conf. Ecol. Impact Acid Precipitation. Norway, SNSF project 224–225Google Scholar
  27. Kimmel WG, Cooper EL and Wagner CC (1996) Macroinvertebrate and fish populations of four streams receiving high rates of hydrogen and sulfates ion deposition. J. Freshwat. Ecol. 11(4): 493–511Google Scholar
  28. Kimmel WG, Murphey DJ, Sharpe WE and Dewalle DR (1985) Macroinvertebrate community structure and detritus processing rates in two southwestern Pennsylvania streams acidified by atmospheric deposition. Hydrobiologia 124: 97–102Google Scholar
  29. Landmann G and Bonneau M (1995) Forest decline and atmospheric deposition in the French mountains. In: Landmann G and Bonneau M (eds). Springer-Verlag, Berlin, Heidelberg, New York, 461 pGoogle Scholar
  30. Leivestad H and Muniz IP (1976) Fish kill at low pH in a Norwegian river. Nature 259: 391–392Google Scholar
  31. Maltby L (1996) Detritus processing. In: Petts G and Calow P (eds) River Biota: Diversity and Dynamics, pp 145–167. Blackwell Science, UKGoogle Scholar
  32. Massabuau JC, Probst A and Guérold F (1995) Critical loads of acidity to streamwaters in the Vosges mountains (France): Biological criteria. In: Landmann G and Bonneau M (eds) Forest Decline and Air Pollution Effects in the French Mountains, pp 387–393. Springer-Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  33. Merrit RW and Cummins KW (1996) Trophic relations of macroinvertebrates. In: Hauer FR and Lamberti GA (eds) Methods in Stream Ecology, pp 453–474. Academic Press, LondonGoogle Scholar
  34. Muniz IP (1991) Freshwater acidification: its effects on species and communities of freshwater microbes, plants and animals. Proceeding of the Royal Society of Edinburgh, 97: pp 227–254Google Scholar
  35. Party JO, Probst A, Dambrine E and Thomas AL (1995) Critical loads of acidity to surface water in the Vosges massif (North-east of France). Water Air Soil Pollut. 85: 2407–2412Google Scholar
  36. Petersen RC, Cummins KW and Ward GM (1989) Microbial and animal processing in detritus woodland stream. Ecol. Monog. 59(1): 21–39Google Scholar
  37. Pough FH (1976) Acid precipitation and embryonic mortality of spotted salamanders Ambystoma maculatum. Science 192: 68–70Google Scholar
  38. Probst A, Massabuau JC, Probst JL and Fritz B (1990) Acidification des eaux de surface sous l'influence des précipitations acides: rôle de la végétation and du substratum, conséquences pour les populations de truites. Le cas des ruisseaux des Vosges. C. R. Acad. Sci., Paris t. 311, Série II, 405–411Google Scholar
  39. Raddum GG and Fjellheim A (1984) Acidification and early warning organisms in freshwater in Western Norway. Vehr. Internat. Verein Limnol. 22: 1972–1979Google Scholar
  40. Raddum GG and Fjellheim A (1994) Invertebrate community changes caused by reduced acidification. In: Steinberg CEW and Wright RF (eds) Acidification of Freshwater Ecosystems: Implication for the Future, pp 345–354. John Wiley, New YorkGoogle Scholar
  41. Rascher CM, Driscoll CT and Peters NE (1987) Concentrations and flux of solutes from snow and forest floor during snowmelt in the Central Adirondack region of New York. Biochem. 3: 209–224Google Scholar
  42. Resh VH and Jackson JK (1993) Rapid assessment approaches to biomonitoring using benthic macroinvertebrates. In: Rosenberg DM and Resh VH (eds) Freshwater Biomonitoring and Benthic Macroinvertebrates, pp 195–233. Chapman and Hall, New YorkGoogle Scholar
  43. Sullivan TJ, Christopherson N, Muniz IP, Seip HMand Sullivan PD (1986) Aquaeous aluminium chemistry response in episodic increases in discharge. Nature 331: 607–609Google Scholar
  44. Sullivan TJ, Eilers JM, Cosby BJ and Vache KB (1997) Increasing role of nitrogen in the acidification of surface waters in the Adirondack Mountains, New York. Water Air Soil Pollut. 95: 313–336Google Scholar
  45. Sutcliffe DW and Carrick TR (1973) Studies on mountain streams in the English Lake District. I. pH, calcium and the distribution of invertebrates in the River Duddon. Freshwater Biol. 3: 437–462Google Scholar
  46. Tachet H, Bournaud M and Richoux P (1991) Introduction à l'étude des macroinvertébrés d'eaux douces. Association Française de Limnologie, Université de Lyon 1. Publication No 24696/1000Google Scholar
  47. Tanner PA, Lei HC, Huang MY and Shen ZL (1997) Acid rain and below-cloud scavenging in southwestern China. J. Atmospheric Chem. 27: 71–78Google Scholar
  48. Ventura M and Harper D (1996) The impacts of acid precipitation mediated by geology and forestry upon upland stream invertebrate communities. Archiv für Hydrobiologie 138: 161–173Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • François Guerold
    • 1
  • Jean-Pierre Boudot
    • 2
  • Gilles Jacquemin
    • 3
  • Denis Vein
    • 4
  • Denis Merlet
    • 2
  • James Rouiller
    • 2
  1. 1.Equipe d'EcotoxicologieUPRES EBSE, EA 1100Metz cedexFrance
  2. 2.Centre de Pédologie BiologiqueUPR 6831 du CNRSFrance
  3. 3.Laboratorie de Biologie des InsectesUniversité Henri PoincaréFrance
  4. 4.Institut National Polytechnique de Lorraine, ENSAIAVandoeuvre-lès-Nancy CedexFrance

Personalised recommendations