, Volume 6, Issue 3, pp 241–249 | Cite as

A Grand Canonical Monte-Carlo Simulation Study of Xenon Adsorption in a Vycor-like Porous Matrix

  • R.J.-M. Pellenq
  • S. Rodts
  • V. Pasquier
  • A. Delville
  • P. Levitz


We have performed atomistic Grand Canonical Monte-Carlo (GCMC) simulations of adsorption of xenon in a Vycor-like matrix at 195 K. The disordered mesoporous network is obtained by applying a numerical 3D off-lattice reconstruction procedure to a simulation box originally containing silicon and oxygen atoms of a non-porous silica solid. In order to reduce the computational cost, we have applied a homothetic decrease of the simulation box dimensions which preserves the morphology and the topology of the pore network (the average pore dimension is then around 30 Å). The surface chemistry is obtained in a realistic fashion by saturating all dangling bonds with hydrogen atoms. Small angle scattering spectra calculated on different numerical samples have evidenced a departure from Porod's law due to surface roughness. The simulated isotherms calculated on such disordered connected porous networks, show the capillary condensation phenomenon. The shape of the adsorption curves differs from that obtained for simple pore geometries. The analysis of the adsorbed quantity distribution indicates partial molecular-film formation depending on the local surface curvature and roughness.

silical glasses CPG Vycor adsorption capillary condensation molecular simulation Monte-Carlo SANS SAXS fractals surface roughness Porod's law Gurvitch rule hysteresis loop 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agamalian, M., J.M. Drake, S.K. Sinha, and J.D. Axe, “Neutron Diffraction Study of the Pore Surface Layer of Vycor Glass,” Phys. Rev. E, 55, 3021–3027 (1997).Google Scholar
  2. Avnir, D., O. Biham, D. Lidar, and O. Malcai, “Is the Geometry of Nature Fractal?,” Science, 278, 39–40 (1998).Google Scholar
  3. Ball, P.C. and R. Evans, “Temperature Dependence of Gas Adsorption on a Mesoporous Solid: Capillary Criticality and Hysteresis,” Langmuir, 5, 714–723 (1989).Google Scholar
  4. Barker, J.A., R.O. Watts, J.K. Lee, T.P. Schafer, and Y.T. Lee, “Interatomic Potentials for Krypton and Xenon,” J. Chem. Phys., 61, 3081–3089 (1974).Google Scholar
  5. Bojan, M.J. and W.A. Steele, “Computer Simulations of Sorption in Model Cylindrical Pores,” in Proceeding of Fundamental of Adsorption, M.D. LeVan (Eds.), pp. 17–33, Kluwer Academic Publishers, Boston, 1996.Google Scholar
  6. Burgess, C.G.V., D.H. Everett, and S. Nuttal, “Adsorption of CO2 and Xenon by Porous Glass over a Wide Range of Temperature and Pressure: Applicability of the Langmuir Case VI Equation,” Langmuir, 6, 1734–1738 (1990).Google Scholar
  7. Celestini, F., “Capillary CondensationWithin Nanopores of Various Geometries,” Physics Lett. A, 228, 84–90 (1997).Google Scholar
  8. Gelb, L.D. and K.E. Gubbins, “Characterization of Porous Glasses: Simulation Models, Adsorption Isotherms and the BET Analysis Method,” Langmuir, 14, 2097–2111 (1998).Google Scholar
  9. Kierlick, E., M.L. Rosinberg, G. Tarjus, and E. Pitard, “Mean-Spherical Approximation for a Lattice Model of a Fluid in a Disordered Matrix,” Mol. Phys., 95, 341–352 (1998).Google Scholar
  10. Landmesser, H., H. Kosslick, W. Storek, and R. Frick, “Interior Surface Hydroxyl Groups in Ordered Mesoporous Silicates,” Solid State Ionics, 101–103, 271–277 (1997).Google Scholar
  11. Levitz, P., “Off-Lattice Reconstruction of Porous Media: Critical Evaluation, Geometrical Confinement and Molecular Transport,” Adv. Coll. Int. Sci., 76–77, 71–106 (1998).Google Scholar
  12. Levitz, P., G. Ehret, S.K. Sinha, and J.M. Drake, “Porous Vycor Glass: The Microstructure as Probed by Electron Microscopy, Direct Energy Transfer, Small-Angle Scattering and Molecular Adsorption,” J. Chem. Phys., 95, 6151–6161 (1991).Google Scholar
  13. Levitz, P., V. Pasquier, and I. Cousin, “Off-Lattice Reconstructed Biphasic Media Using Gaussian Random Field: Evaluation for Different Disordered Porous Solids,” Caracterization of Porous Solids IV, B. Mc Enanay, T.J. May, J. Rouquerol, K.S.W. Sing, and K.K. Unger (Eds.), p. 213, The Royal Soc. of Chem., London, 1997.Google Scholar
  14. Levitz, P. and D. Tchoubar, “Disordered Porous Solids: From Chord Distributions to Small Angle Scattering,” J. Phys. I, 2, 771–790 (1992).Google Scholar
  15. Mason, G., “Detemination of the Pore-Size Distributions and Pore-Space Connectivity of Vycor Porous Glass from Adsorption-Desorption Hysteresis Capillary Condensation Isotherms,” Proc. R. Soc. Lond. A, 415, 453–486 (1988).Google Scholar
  16. Mitropoulos, A.C., J.M. Haynes, R.M. Richardson, and N.K. Kanellopoulos, “Characterization of Porous Glass by Adsorption of Dibromomethane in Conjunction with Small Angle Scattering,” Phys. Rev. B., 52, 10035–10042 (1995).Google Scholar
  17. Morishige, K., H. Fujii, M.Uga, and D. Kinakawa, “Capillary Critical Point of Argon, Nitrogen, Oxygen, Ethylene and Carbon Dioxide in MCM41,” Langmuir, 13, 3494–3498 (1997).Google Scholar
  18. Nicholson, D. and N.G. Parsonage, Computer Simulation and the Statistical Mechanics of Adsorption, Academic Press, 1982.Google Scholar
  19. Nuttal, S., “Adsorption and Capillary Condensation of Xenon in Porous Glass and Porous Carbon,” PhD thesis, University of Bristol, UK (1974).Google Scholar
  20. Page, J.H., J. Liu, A. Abeles, E. Herbolzheimer, H.W. Deckman, and D.A. Weitz, “Adsorption and Desorption of a Wetting Fluid in Vycor Studied by Acoustic and Optical Techniques,” Phys. Rev. E., 52, 2763–2777 (1995).Google Scholar
  21. Page, K.S. and P.A. Monson, “Monte Carlo Simulation of Phase Diagrams for a Fluid Confined in a Desordered Porous Material,” Phys. Rev. E, 54, 6557–6564 (1996).Google Scholar
  22. Pellenq, R.J.-M. and P. Levitz, to be published. Pellenq, R.J.-M. and D. Nicholson, “Intermolecular Potential Function for the Physical Adsorption of Rare Gases in Silicalite,” J. Phys. Chem., 98, 13339–13349 (1994).Google Scholar
  23. Pellenq, R.J.-M. and D. Nicholson, “Grand Canonical Monte-Carlo Simulation of Adsorption of Small Molecules in Silicalite Zeolite,” Langmuir, 11, 1626–1635 (1995).Google Scholar
  24. Pellenq, R.J.-M., B. Tavitian, D. Espinat, and A. Fuchs, “Grand Canonical Monte-Carlo Simulations of Adsorption of Polar and Non Polar Molecules in NaY Zeolite,” Langmuir, 12, 4768–4783 (1996).Google Scholar
  25. Peterson, B.K. and K.E. Gubbins, “Phase Transitions in a Cylindrical Pore, Grand Canonical Monte-Carlo, Mean Field Theory and the Kelvin Equation,” Mol. Phys., 62, 215–226 (1987).Google Scholar
  26. Rouquerol, F., J. Rouquerol, and K. Sing, Adsorption by Powders and Porous Solids, Academic Press, 1998.Google Scholar
  27. Torii, R.H., K.J. Maris, and G.M. Seidel, “Heat Capacity and Torsional Oscillator Studies of Molecular Hydrogen in Porous Vycor Glass,” Phys. Rev. B, 41, 7167–7181 (1990).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • R.J.-M. Pellenq
    • 1
  • S. Rodts
    • 2
  • V. Pasquier
    • 2
  • A. Delville
    • 2
  • P. Levitz
    • 2
  1. 1.Centre de Recherche sur la Matière DiviséeCNRS et Université d'OrléansOrléans, cedex 02France
  2. 2.Centre de Recherche sur la Matière DiviséeCNRS et Université d'OrléansOrléans, cedex 02France

Personalised recommendations