Bending and fracture of compact circumferential and osteonal lamellar bone of the baboon tibia

  • D. Liu
  • H. D. Wagner
  • S. Weiner


Lamellar bone is common among primates, either in the form of extended planar circumferential arrays, or as cylindrically shaped osteons. Osteonal bone generally replaces circumferential lamellar bone with time, and it is therefore of much interest to compare the mechanical properties and fracture behavior of these two forms of lamellar bone. This is, however, difficult as natural specimens of circumferential lamellar bone large enough for standard mechanical tests are not available. We found that as a result of treatment with large doses of alendronate, the lateral sides of the diaphyses of baboon tibia contained fairly extensive regions of circumferential lamellar bone, the structure of which appears to be indistinguishable from untreated lamellar bone. Three-point bending tests were used to determine the elastic and ultimate properties of almost pure circumferential lamellar bone and osteonal bone in four different orientations relative to the tibia long axis. After taking into account the differences in porosity and extent of mineralization of the two bone types, the flexural modulus, bending strength, fracture strain and nominal work-to-fracture properties were similar for the same orientations, with some exceptions. This implies that it is the lamellar structure itself that is mainly responsible for these mechanical properties. The fracture behavior and morphologies of the fracture surfaces varied significantly with orientation in both types of bone. This is related to the microstructure of lamellar bone. Osteonal bone exhibited quite different damage-related behavior during fracture as compared to circumferential lamellar bone. Following fracture the two halves of osteonal bone remained attached whereas in circumferential lamellar bone they separated. These differences could well provide significant adaptive advantages to osteonal bone function.


Porosity Fracture Surface Alendronate Mechanical Test Large Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. CURREY, in "The Mechanical Adaptations of Bones" (Princeton University Press, Princeton, NJ, 1984).Google Scholar
  2. 2.
    D. H. ENLOW, Texas J. Sci. 10 (1958) 187.Google Scholar
  3. 3.
    A. DE RICQLÉS, F. J. MEUNIER, J. CASTANET and H. FRANCILLON-VIEILLOT, in "Bone", Vol. 3, edited by B. K. Hall (CRC Press, Boca Raton, FL, 1991) p. 1.Google Scholar
  4. 4.
    R. A. ROBINSON, J. Bone Joint Surg. 34A (1952) 389.Google Scholar
  5. 5.
    M. J. GLIMCHER, Rev. Mod. Phys. 31 (1959) 313.Google Scholar
  6. 6.
    S. WEINER and W. TRAUB, FEBS Lett. 206 (1986) 262.PubMedGoogle Scholar
  7. 7.
    Idem., FASEB J. 6 (1992) 879.PubMedGoogle Scholar
  8. 8.
    W. GEBHARDT, Arch. Entwickl. Mech. Org. 20 (1906) 187.Google Scholar
  9. 9.
    J. W. SMITH, J. Anat. 94 (1960) 329.Google Scholar
  10. 10.
    M. M. GIRAUD-GUILLE, Calcif. Tissue Int. 42 (1988) 167.PubMedGoogle Scholar
  11. 11.
    S. WEINER, T. ARAD, I. SABANAY and W. TRAUB, Bone 20 (1997) 509.PubMedGoogle Scholar
  12. 12.
    E. B. RUTH, Amer. J. Anat. 80 (1947) 35.Google Scholar
  13. 13.
    G. MAROTTI, Calcif. Tissue Int. 53 (1993) 547.Google Scholar
  14. 14.
    R. A. ROBINSON and S. R. ELLIOT, J. Bone Joint Surg. 39A (1957) 167.Google Scholar
  15. 15.
    E. P. KATZ and S. LI, J. Mol. Biol. 80 (1973) 1.PubMedGoogle Scholar
  16. 16.
    J. D. CURREY, J. Biomech. 21 (1988) 131.PubMedGoogle Scholar
  17. 17.
    R. B. MARTIN and D. L. BOARDMAN, ibid. 26 (1993) 1047.PubMedGoogle Scholar
  18. 18.
    J. JOWSEY, Clin. Orthop. 17 (1960) 210.Google Scholar
  19. 19.
    F. G. EVANS and R. VINCENTELLI, J. Biomech. 2 (1969) 63.Google Scholar
  20. 20.
    C. M. RIGGS, L. C. VAUGHAN, G. P. EVANS, L. E. LANYON and A. BOYDE, Anat. Embryol. 187 (1993) 239.PubMedGoogle Scholar
  21. 21.
    M. W. MASON, J. G. SKEDROS and R. D. BLOEBAUM, Bone 17 (1995) 229.PubMedGoogle Scholar
  22. 22.
    R. B. MARTIN, S. T. LAU, P. V. MATHEWS, V. A. GIVSON and S. M. STOVER, J. Biomech. 29 (1996) 1515.PubMedGoogle Scholar
  23. 23.
    A. SIMKIN and G. ROBIN, J. Biomech. 6 (1973) 31.PubMedGoogle Scholar
  24. 24.
    A. ASCENZI, P. BASCHEIRI and A. BENVENUTI, ibid. 23 (1990) 763.PubMedGoogle Scholar
  25. 25.
    V. ZIV, H. D. WAGNER and S. WEINER, Bone 18 (1996) 417.PubMedGoogle Scholar
  26. 26.
    J. D. CURREY, J. Anat. 98 (1959) 87.Google Scholar
  27. 27.
    D. B. BURR, M. B. SCHAFFLER and R. G. FREDRICKSON, J. Biomech. 21 (1988) 939.PubMedGoogle Scholar
  28. 28.
  29. 29.
    R. BALENA, B. C. TOOLAN, M. SHEA, A. MARKATOS, E. R. MYERS, S. C. LEE, E. E. OPAS, J. G. SEEDOR, H. KLE IN, D. FRANKENFIELD, H. QUARTUCCIO, C. FIORAVANT I, J. CLAIR, E. BROWN, W. C. HAYES and G. A. RODAN, J. Clin. Invest. 92 (1993) 2577.PubMedGoogle Scholar
  30. 30.
    A. H. BURSTEIN, J. D. CURREY, V. H. FRANKEL and D. T. REILLY, J. Biomech. 5 (1972) 35.PubMedGoogle Scholar
  31. 31.
    T. S. KELLER, Z. MAO and D. M. SPENGLER, J. Orthop. Res. 8 (1990) 592.PubMedGoogle Scholar
  32. 32.
    D. D. MOYLE and R. W. BOWDEN, J. Biomech. 17 (1984) 203.PubMedGoogle Scholar
  33. 33.
    D. T. REI LLY and A. H. BURSTEIN, ibid. 8 (1975) 393.PubMedGoogle Scholar
  34. 34.
    R. F. KER and P. ZIOUPOS, Comments Theor. Biol. 4 (1997) 151.Google Scholar
  35. 35.
    W. T. DEMPSTER and R. T. LIDDICOAT, Amer. J. Anat. 91 (1952) 331.PubMedGoogle Scholar
  36. 36.
    W. BONFIELD and M. D. GRYNPAS, Nature 270 (1977) 453.PubMedGoogle Scholar
  37. 37.
    J. L. KATZ, ibid. 283 (1980) 106.PubMedGoogle Scholar
  38. 38.
    J. D. CURREY, Phil. Trans. R. Soc. Lond. B 304 (1984) 509.Google Scholar
  39. 39.
    C. H. TURNER, A. CHARDRAN and R. M. V. PIDAPARTI, Bone 17 (1995) 85.PubMedGoogle Scholar
  40. 40.
    J. L. KATZ, H. S. YOON, S. LIPSOM, R. MAHARIDGE, A. MEUNIER and P. CHRISTEL, Calcif. Tissue Int. 36 (1984) S31.Google Scholar
  41. 41.
    Idem., J. Biomech. 23 (1990) 837.PubMedGoogle Scholar
  42. 42.
    V. ZIV, I. SABANAY, T. ARAD, W. TRAUB and S. WEINER, Microsc. Res. Tech. 33 (1996) 203.PubMedGoogle Scholar
  43. 43.
    J. D. CURREY, Quart. J. Microscope Sci. 103 (1962) 111.Google Scholar
  44. 44.
    G. CORONDAN and W. L. HAWORTH, J. Biomech. 19 (1986) 207.PubMedGoogle Scholar
  45. 45.
    K. PIEKARSKI, J. Applied. Phys. 41 (1970) 215.Google Scholar
  46. 46.
    J. L. KATZ and A. A. MEUNIER, J. Mater. Sci. Mater. Med. 1 (1990) 1.Google Scholar
  47. 47.
    N. SASAKI, T. IKAWA and A. FUKUDA, J. Biomech. 24 (1991) 57.PubMedGoogle Scholar
  48. 48.
    H. D. WAGNER and S. WEINER ibid. 25 (1992) 1311.Google Scholar
  49. 49.
    J. D. CURREY, K. BREAR and P. ZIOUPOS, ibid. 27 (1994) 885.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • D. Liu
    • 1
  • H. D. Wagner
    • 1
  • S. Weiner
    • 1
  1. 1.Departments of Structural Biology and*Materials and Interfaces, Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations