Advertisement

Biotechnology Techniques

, Volume 13, Issue 12, pp 877–881 | Cite as

Clarification and concentration with membrane technology of a phycocyanin solution extracted from Spirulina platensis

  • Pascal Jaouen
  • Bertrand Lépine
  • Nathalie Rossignol
  • Romuald Royer
  • Francis Quéméneur
Article

Abstract

Membrane technologies were investigated with the aim to improve stability of C-Phycocyanin extracts resulting from ultrasonic breakage of Spirulina platensis. Five membranes, ranging from microfiltration to reverse osmosis, were utilized both for clarification and concentration steps. Nanofiltration with tubular organic membranes exhibited good performances: pigment recovery was 100%, mean permeation flux was 85 l h−1 m−2 for achieving a concentration factor of 7 with 30×105 Pa pressure and 1.5 m s−1 tangential velocity (turbulent flow).

membrane technology nanofiltration phycocyanin Spirulina platensis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abalde J, Betancourt L, Torres E, Cid A, Barwell C (1998) Purification and characterization of phycocyanin from the marine cyanobacterium Synechoccus sp. IO9201. Plant Sci.: 136, 109-120.Google Scholar
  2. Belay A, Ota Y, Miyakawa K, Shimamatsu H (1993) Current knowledge on potential health benefits of Spirulina. J. Appl. Phycol. 5: 235-241.Google Scholar
  3. Dainippon Ink and Chemicals (1983) Antitumoral agents containing phycobillin. Japanese Patent no. 58-06 52 16 (inventors: Iijima N, Fugii N, Shimamatsu H).Google Scholar
  4. Gudin C (1991) Les couleurs de la mer. Biofutur 11, 9-11.Google Scholar
  5. Iwata K, Inayama T, Kato T (1990) Effects of Spirulina platensis on plasma lipoprotein lipase activity in fructose-induced hyperlipidemic rats. J. Nutr. Sci. Vitaminol. 36: 165-171.Google Scholar
  6. Kageyama H, Ishii A, Matsuoka T, Kodera Y, Hiroto M, Matsushima A, Inada Y (1994) Simple isolation of phycocyanin from Spirulina platensis and phycocyanobilin-protein interaction. J. Mar. Biotechnol. 1: 185-188.Google Scholar
  7. Li DM, Qi YZ et al. (1997) Spirulina industry in China: Present status and future prospects. J. Appl. Phycol. 9: 25-28.Google Scholar
  8. Patterson GML (1996) Biotechnological applications of cyanobacteria. J. Sci. Ind. Res. 55: 669-684.Google Scholar
  9. Romay C, Armesto J, Remirez D, González R, Ledon N, Garcia I (1998) Antioxydant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflamm. Res. 47: 36-41.Google Scholar
  10. Rossignol N, Vandanjon L, Jaouen P, Quéméneur F (1999) Membrane technology for the continuous separation microalgae/culture medium: compared performances of cross-flow microfiltraion and ultrafiltration. Aquacult. Eng. 20: 191-208.Google Scholar
  11. Vandanjon L, Rossignol N, Jaouen P, Quéméneur F, Robert JM (1999) Concentration and desalting by membrane processes of a natural pigment produced by the marine diatom Haslea ostrearia Simonsen. J. Biotechnol. 70: 393-402.Google Scholar
  12. Vonshak A (1990) Recent advances in microalgal biotechnology. Biotechnol. Adv. 8: 709-727.Google Scholar
  13. Zarouk C (1966) Contribution à l'étude d'une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima. Ph.D. Thesis, Paris, France.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Pascal Jaouen
    • 1
  • Bertrand Lépine
    • 2
  • Nathalie Rossignol
    • 1
  • Romuald Royer
    • 2
  • Francis Quéméneur
    • 1
  1. 1.Laboratoire de Génie des Procédés, CRTT, Institut des Substances et Organismes de la MerISOMer, Boulevard de l'UniversitéSaint-Nazaire CedexFrance
  2. 2.Alpha-Biotech, Centre de production de microalgues, `Le Frostidié'AsséracFrance

Personalised recommendations