Journal of Computational Neuroscience

, Volume 10, Issue 1, pp 79–97 | Cite as

Membrane Potential Fluctuations Determine the Precision of Spike Timing and Synchronous Activity: A Model Study

  • Jutta Kretzberg
  • Martin Egelhaaf
  • Anne-Kathrin Warzecha


It is much debated on what time scale information is encoded by neuronal spike activity. With a phenomenological model that transforms time-dependent membrane potential fluctuations into spike trains, we investigate constraints for the timing of spikes and for synchronous activity of neurons with common input. The model of spike generation has a variable threshold that depends on the time elapsed since the previous action potential and on the preceding membrane potential changes. To ensure that the model operates in a biologically meaningful range, the model was adjusted to fit the responses of a fly visual interneuron to motion stimuli. The dependence of spike timing on the membrane potential dynamics was analyzed. Fast membrane potential fluctuations are needed to trigger spikes with a high temporal precision. Slow fluctuations lead to spike activity with a rate about proportional to the membrane potential. Thus, for a given level of stochastic input, the frequency range of membrane potential fluctuations induced by a stimulus determines whether a neuron can use a rate code or a temporal code. The relationship between the steepness of membrane potential fluctuations and the timing of spikes has also implications for synchronous activity in neurons with common input. Fast membrane potential changes must be shared by the neurons to produce synchronous activity.

spike mechanism model spike timing synchronization reliability neural coding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alonso JM, Usrey W, Reid R (1996) Precisely correlated firing in cells of the lateral geniculate nucleus. Nature 383:815-819.Google Scholar
  2. Bair W (1999) Spike timing in the mammalian visual system. Curr. Opin. Neurobiol. 9:447-453.Google Scholar
  3. Bair W, Koch C (1996) Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Comput. 8:1185-1202.Google Scholar
  4. Berry MJ, Warland DK, Meister M (1997) The structure and precision of retinal spike trains. PNAS, USA 94:5411-5416.Google Scholar
  5. Bialek W, Rieke F (1992) Reliability and information transmission in spiking neurons. TINS 15:428-434.Google Scholar
  6. Britten K, Shadlen M, Newsome W, Movshon J (1993) Responses of neurons in macaque MT to stochastic motion signals. Vis. Neurosci. 10:1157-1169.Google Scholar
  7. Brivanlou I, Warland D, Meister M (1998) Mechanisms of concerted firing among retinal ganglion cells. Neuron 20:527-539.Google Scholar
  8. Brody C (1999) Correlations without synchrony. Neural Comput. 11:1537-1551.Google Scholar
  9. Buračas G, Zador A, DeWeese M, Albright T (1998) Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron 20:956-969.Google Scholar
  10. Calvin W, Stevens C (1968) Synaptic noise and other sources of randomness in motoneuron interspike intervals. J. Neurophysiol. 31:574-587.Google Scholar
  11. Carr C, Friedmann M (1999) Evolution of time coding systems. Neural Comput. 11:1-20.Google Scholar
  12. Cecchi G, Sigman M, Alonso JM, Martinez L, Chialvo D, Magnasco M (2000) Noise in neurons is message-dependent. Proc. Natl. Acad. Sci. USA 97:5557-5561.Google Scholar
  13. de Ruyter van Steveninck R, Bialek W (1988) Real-time performance of a movement-sensitive neuron in the blowfly visual system: Coding and information transfer in short spike sequences. Proc. R. Soc. Lond. B 234:379-414.Google Scholar
  14. de Ruyter van Steveninck R, Bialek W (1995) Reliability and statistical efficiency of a blowfly movement sensitive neuron. Phil. Trans. R. Soc. Lond. B 348:321-340.Google Scholar
  15. de Ruyter van Steveninck R, Borst A, Bialek W (2000) Real-time encoding of motion: Answerable questions and questionable answers from the fly's visual system. In: Zanker JM, Zeil J, eds. Visual Motion. Springer, Heidelberg (in press).Google Scholar
  16. Ebbinghaus C, Diesmann M, Rotter S, Aertsen A (1997) The neural firing threshold: Can I help U? In: Elsner N, Wässle H, eds. Göttingen Neurobiology Report 1997. Proceedings of the 25th G¨ottingen Neurobiology Conference 1997. Thieme, Stuttgart p. 624.Google Scholar
  17. Eckhorn R, Reitboeck H, Arndt M, Dicke P (1990) Feature linking via synchronization among distributed assemblies: Simulations of results from cat visual cortex. Neural Comput. 2:293-307.Google Scholar
  18. Egelhaaf M, Borst A (1993) Movement detection in arthropods. In: Miles FA, Wallman J, eds. Visual Motion and Its Role in the Stabilization of Gaze. Elsevier, Amsterdam. pp. 53-77.Google Scholar
  19. Egelhaaf M, Reichardt W (1987) Dynamic response properties of movement detectors: Theoretical analysis and electrophysiological investigation in the fly system of the fly. Biol. Cybern. 56: 69-87.Google Scholar
  20. Egelhaaf M, Warzecha, A-K (1999) Encoding of motion in real time by the fly visual system. Curr. Opin. Neurobiol. 9:454-460.Google Scholar
  21. Gerstner W, van Hemmen L (1992) Associative memory in a network of "spiking" neurons. Network 3:139-164.Google Scholar
  22. Gestri G, Mastebroek H, Zaagman W (1980) Stochastic constancy, variability and adaptation of spike generation: Performance of a giant neuron in the visual system of the fly. Biol. Cybern. 38:31-40.Google Scholar
  23. Haag J, Borst A (1996) Amplifications of high-frequency synaptic inputs by active dendritic membrane processes. Nature 379:639-641.Google Scholar
  24. Haag J, Borst A (1997) Encoding of visual motion information and reliability in spiking and graded potential neurons. J. Neurosci. 17:4809-4819.Google Scholar
  25. Haag J, Borst A (1998) Active membrane properties and signal encoding in graded potential neurons. J. Neurosci. 18:7972-7986.Google Scholar
  26. Haag J, Vermeulen A, Borst A (1999) The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: III. Visual response properties. J. Comp. Neurosci. 7:213-234.Google Scholar
  27. Hausen K (1981) Monocular and binocular computation of motion in the lobula plate of the fly. Verh. Dtsch. Zool. Ges. 74:49-70.Google Scholar
  28. Hausen K (1982) Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: Receptive field organization and response characteristics. Biol. Cybern. 46:67-79.Google Scholar
  29. Heck D, Rotter S, Aertsen A (1993) Spike generation in cortical neurons: Probabilistic threshold function shows intrinsic and long-lasting dynamics. In: Aertsen A, ed. Brain Theory. Elsevier, Amsterdam. pp. 241-249.Google Scholar
  30. Heiligenberg W (1991) Neural Nets in Electric Fish. MIT Press, Cambridge, MA.Google Scholar
  31. Hengstenberg R (1982) Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora. J. Comp. Physiol. 149:179-193.Google Scholar
  32. Hodgkin A, Huxley A (1952) A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes. J. Physiol. (London) 117:500-544.Google Scholar
  33. Johnston D, Wu SS (1995) Foundations of Cellular Neurophysiology. MIT Press, Cambridge, MA.Google Scholar
  34. Kandel E, Schwartz J, Jessell T (1995) Essentials of neural science and behavior. Appleton & Lange, Norwalk, CT.Google Scholar
  35. Kawasaki M (1997) Sensory hyperacuity in the jamming avoidance response of weakly electric fish. Curr. Opin. Neurobiol. 7:473-479.Google Scholar
  36. Koch C (1999) Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, New York.Google Scholar
  37. Lampl I, Reichova I, Ferster D (1999) Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron 22:361-374.Google Scholar
  38. Land MF, Collet TS (1974) Chasing behaviour of houseflys (Fannia caicularis). J. Comp. Physiol. 89:331-357.Google Scholar
  39. Levine M (1998) Models for the cross-correlation between retinal ganglion cells. Biol. Cybern. 79:367-376.Google Scholar
  40. Lisberger SG, Movshon JA (1999) Visual motion analysis for pursuit eye movements in area MT of macaque monkeys. J. Neurophysiol. 19:2224-2246.Google Scholar
  41. Maass W (1996) Networks of spiking neurons: The third generation of neural network models. Neur Networks 10:1659-1671.Google Scholar
  42. Maddess T, Laughlin SB (1985) Adaptation of the motion-sensitive neuronH1is generated locally and governed by contrast frequency. Proc. R. Soc. Lond. B 225:251-275.Google Scholar
  43. Mainen Z, Sejnowski T (1995) Reliability of spike timing in neocortical neurons. Science 268:1503-1506.Google Scholar
  44. Manwani A, Koch C (1999a) Detecting and estimating signals in noisy cable structures: I. Neuronal noise sources. Neural Comput. 11:1797-1829.Google Scholar
  45. Manwani A, Koch C (1999b) Detecting and estimating signals in noisy cable structures: II. Information theoretical analysis. Neural Comput. 11:1831-1873.Google Scholar
  46. Mastebroek H (1974) Stochastic structure of neural activity in the visual system of the blowfly. Ph.D. thesis, Rijksuniversiteit te Groningen.Google Scholar
  47. Mechler F, Victor JD, Purpura KP, Shapley R (1998) Robust temporal coding of contrast by V1 neurons for transient but not for steady-state stimuli. J. Neurosci. 18:6583-6598.Google Scholar
  48. Pollen DA, Andrews BW, Feldon SE (1978) Spatial frequency selectivity of periodic complex cells in the visual cortex of the cat. Vis. Res. 18:665-682.Google Scholar
  49. Reich D, Victor J, Knight B (1998) The power ratio and the interval map: Spiking models and extracellular recordings. J. Neurosci. 18:10090-10104.Google Scholar
  50. Reich D, Victor J, Kneight B, Ozaki T, Kaplan E (1997) Response variability and timing precision of neuronal spike trains in vivo. J. Neurophysiol. 77:2836-2841.Google Scholar
  51. Ritz R, Sejnowski T (1997) Correlation coding in stochastic neural networks. In: Gerstner W, Germona A, Hasler M, Nicaud J-D, eds. Proceedings ICANW 97. Springer, Heidelberg, pp. 79-84.Google Scholar
  52. Schilstra C, Hateren JH van (1999) Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics. J. Exp. Biol. 202:1481-1490.Google Scholar
  53. Schneidman E, Freedman B, Segev I (1998) Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Comput. 10:1679-1703.Google Scholar
  54. Shadlen M, Newsome W (1994) Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4:569-579.Google Scholar
  55. Shadlen M, Newsome W (1998) The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. J. Neurosci. 18:3870-3896.Google Scholar
  56. Softky W (1995) Simple codes versus efficient codes. Curr. Opin. Neurobiol. 5:239-247.Google Scholar
  57. Softky W, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random epsps. J. Neurosci. 13:334-350.Google Scholar
  58. Stevens C, Zador A (1998) Input synchrony and the irregular firing of cortical neurons. Nature Neurosci 1:210-217.Google Scholar
  59. Tolhurst D, Movshon JA, Dean A (1983) The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vis. Res. 23:775-785.Google Scholar
  60. Usrey WM, Reid RC (1999) Synchronous activity in the visual system. Ann. Rev. Physiol 61:435-456.Google Scholar
  61. Usrey WM, Reppas JB, Reid RC (1998) Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus. Nature 395:384-387.Google Scholar
  62. van Hateren JH, Schilstra C (1999) Blowfly flight and optic flow. II. Head movements during flight. J. Exp. Biol. 202:1491-1500.Google Scholar
  63. Vogels R, Spileers W, Orban G (1989) The response variability of striate cortical neurons in behaving monkey. Exp. Brain. Res. 77:432-436.Google Scholar
  64. Wagner H (1986) Flight performance and visual control of flight of the free flying housefly (Musca domestica L.) II. Pursuit of targets. Phil. Trans. R. Soc. Lond. B 312:553-579.Google Scholar
  65. Warzecha AK, Egelhaaf M (1996) Intrinsic properties of biological motion detectors prevent the optomotor control system from getting unstable. Phil. Trans. R. Soc. Lond. B 351:1579-1591.Google Scholar
  66. Warzecha AK, Egelhaaf M (1997) How reliably does a neuron in the visual motion pathway of the fly encode behaviourally relevant information? Eur. J. Neurosci. 9:1365-1374.Google Scholar
  67. Warzecha AK, Egelhaaf M (1999) Variability in spike trains during constant and dynamic stimulation. Science 283:1927-1930.Google Scholar
  68. Warzecha AK, Egelhaaf M (2000) Neuronal encoding of visual motion in real-time In: Zanker JM, Zeil J, eds. Visual Motion. Springer, Heidelberg (in press).Google Scholar
  69. Warzecha AK, Kretzberg J, Egelhaaf M (1998) Temporal precision of the encoding of motion information by visual interneurons. Curr. Biol. 8:359-368.Google Scholar
  70. Warzecha AK, Kretzberg J, Egelhaaf M (2000) Reliability of a fly motion sensitive neuron depends on stimulus parameters. J. Neurosci. 20:8886-8896.Google Scholar
  71. White JA, Rubinstein JT, Kay AR (2000) Channel noise in neurons. Trends Neurosci. 23:131-137.Google Scholar
  72. Wolf-Oberhollenzer F, Kirschfeld K (1990) Temporal frequency dependence in motion-sensitive neurons of the accessory optic system of the pigeon. Naturwiss. 77:296-298.Google Scholar
  73. Zador A (1998) Impact of synaptic unreliability on the information transmitted by spiking neurons. J. Neurophysiol. 79:1219-1229.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Jutta Kretzberg
    • 1
  • Martin Egelhaaf
    • 2
  • Anne-Kathrin Warzecha
    • 1
  1. 1.Lehrstuhl für Neurobiologie, Fakultät für BiologieUniversität BielefeldBielefeldGermany
  2. 2.Lehrstuhl für Neurobiologie, Fakultät für BiologieUniversität BielefeldBielefeldGermany

Personalised recommendations