Advertisement

In–vitro calcium phosphate growth over functionalized cotton fibers

  • H. K. Varma
  • Y. Yokogawa
  • F. F. Espinosa
  • Y. Kawamoto
  • K. Nishizawa
  • F. Nagata
  • T. Kameyama
Article

Abstract

Biomimetic growth of calcium phosphate compound on cotton sheets treated with tetraethoxy silane and soaked in simulated body fluid solution was studied using scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), micro-Fourier transform infrared spectroscopy (FTIR) and X-ray diffractometry (XRD). Micro-FTIR and EDAX results show that silicon was coupled to the cotton fiber when cotton was treated with tetra-ethoxy silane (TEOS) at 125°C for 1 h. Calcium phosphate nucleation started to occur on the surface of TEOS-treated cotton fibers upon immersion in 1.5×SBF (simulated body fluid solution) within 3 days and after 20 days, all the fiber surfaces were found covered with a thick and porous coating of calcium phosphate. The Ca and P determined by inductively coupled plasma spectroscopy (ICP) analysis revealed that the Ca/P ratio as well as the amount of calcium phosphate coating depends on the soaking time in SBF solution. © 1999 Kluwer Academic Publishers

Keywords

Calcium Phosphate Cotton Fiber Inductively Couple Plasma Porous Coating Phosphate Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Calvert, in “Biomimetic materials chemistry”, edited by S. Mann (VCH, New York, 1996) p. 315.Google Scholar
  2. 2.
    S. Weiner and L. Addadi, J. Mater. Chem. 7 (1997) 689.Google Scholar
  3. 3.
    S. Stupp and P. V. Braun, Science 277(1997) 1242.Google Scholar
  4. 4.
    E. Dalas, J. Kallitis and P. G. Koutsoukos, Langmuir 7 (1991) 1822.Google Scholar
  5. 5.
    M. R. Mucalo, Y. Yokogawa, M. Toriyama, T. Suzuki, Y. Kawamoto, F. Nagata and K. Nishizawa, J. Mater. Sci.: Mater. Med. 6 (1995) 597.Google Scholar
  6. 6.
    Y. Yokogawa, J. Pazreyes, M. Mucalo, M. Toriyama, Y. Kawamoto, T. Suzuki, K. Nishizawa, F. Nagata and T. Kamayama, ibid. 8 (1997) 407.Google Scholar
  7. 7.
    P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga and K. De Groot, J. Biomed. Mater. Res. 28 (1994) 7.Google Scholar
  8. 8.
    L. L. Hench and O. Anderson, in “An introduction to bioceramics”, edited by L. L. Hench and J. Wilson (World Scientific, Singapore, 1993) p. 41.Google Scholar
  9. 9.
    M. Marcolong, P. Ducheyne and W. L. Lacourse, J. Biomed. Mater. Res. 31 (1997) 442.Google Scholar
  10. 10.
    T. Kokubo, in “Bone bonding biomaterials”, edited by P. Ducheyne, T. Kokubo and C. Avan Blitterswijk (Reed Healthcare Communication, London, 1992) p. 31.Google Scholar
  11. 11.
    M. R. Mucalo, Y. Yokogawa, M. Toriyama, T. Suzuki, Y. Kawamoto, F. Nagata and K. Nishizawa, J. Mater. Sci.: Mater. Med. 6 (1995) 409.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • H. K. Varma
    • 1
  • Y. Yokogawa
    • 1
  • F. F. Espinosa
    • 1
  • Y. Kawamoto
    • 1
  • K. Nishizawa
    • 1
  • F. Nagata
    • 1
  • T. Kameyama
    • 1
  1. 1.Bioceramic LaboratoryNational Industrial Research Institute of Nagoya (NIRIN)Hirate-cho, Kita-kuJapan

Personalised recommendations