Advertisement

Autonomous Robots

, Volume 9, Issue 2, pp 175–188 | Cite as

An Autonomous Water Vapor Plume Tracking Robot Using Passive Resistive Polymer Sensors

  • S. Kazadi
  • R. Goodman
  • D. Tsikata
  • D. Green
  • H. Lin
Article

Abstract

A simple reactive robot is described which is capable of tracking a water vapor plume to its source. The robot acts completely within the plume and is endowed with no deliberate information about wind direction or speed, yet accurately tracks the plume upstream. The robot's behavior, results from the behavior of simple resistive polymer sensors and their strategic placement on the robot's body.

olfactory plume tracking autonomous robot resistive polymer sensors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dittmer, K., Grasso, F., and Atema, J. 1995. Effects of varying plume turbulence on temporal concentration signals available to orienting lobsters. Biological Bulletin, 189:232–233.Google Scholar
  2. Dittmer, K., Grasso, F., and Atema, J. 1996. Obstacles to flow produce distinctive patterns of odor dispersal on a scale that could be detected by marine animals. Biological Bulletin, 191:313–314.Google Scholar
  3. Grasso, F., Consi, T., Mountain, D., and Atema, J. 1996. Locating odor sources in turbulence with a lobster inspired robot. In Proc. 4th International Conference on Simulation of Adaptive Behavior, Maes, Mataric, Meyer, Pollack, and Wilson (Eds.), MIT Press: Cambridge, MA.Google Scholar
  4. Grasso, F., Consi, T., Mountain, D., and Atema, J. 1996. Behavior of purely chemotactic robot lobster reveals different odor dispersal patterns in the jet region and the patch field of a turbulent plume. Biol.Bull., 191:312–313.Google Scholar
  5. Grasso, F., Consi, T., Mountain, D., and Atema, J. 1998. Biomimetic robot lobster performs chemo-orientation in turbulence using a pair of spatially separated sensors: Progress and challenges. Submitted to Journal of Robotics and Autonomous Systems.Google Scholar
  6. Ishida, H. et al. 1996. Odour source localization system mimicking behaviour of silkworm moth. Sensors and Actuators, 99:225–230.Google Scholar
  7. Kuwana, Y., Shimoyama, I., and Miura, H. 1995. Steering control of a mobile robot using insect antennae. In IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 2, pp. 530–535.Google Scholar
  8. Kuwana, Y., Shimoyama, I., Sayama, Y., and Miura, H. 1996. Synthesis of pheromone-oriented emergent behavior of a silkworm moth. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1722–1729.Google Scholar
  9. Lewis, N. et al. 1996. Array-Based vapor sensing using chemically sensitive, carbon black-polymer resistors. Chem.Mater. 8(9):2298–2312.Google Scholar
  10. Russell, R.A., Thiel, D., Deveza R., and Mackay-Sim, A. 1994. A robotic system to locate hazardous chemical leaks. IEEE International Conference on Robotics and Automation, 13(3):232–239.Google Scholar
  11. White, J. and Kauer J. 1997. Generating sensor diversity through combinatorial polymer synthesis. Analytical Chemistry, 69(17): 3413–3418.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • S. Kazadi
    • 1
  • R. Goodman
    • 2
  • D. Tsikata
    • 3
  • D. Green
    • 4
  • H. Lin
    • 5
  1. 1.Caltech Microsystems GroupPasadenaUSA
  2. 2.Caltech Microsystems GroupPasadenaUSA
  3. 3.Caltech Microsystems GroupPasadenaUSA
  4. 4.Caltech Microsystems GroupPasadenaUSA
  5. 5.Caltech Microsystems GroupPasadenaUSA

Personalised recommendations