Advertisement

Biotechnology Techniques

, Volume 13, Issue 8, pp 533–538 | Cite as

Metal removal by immobilised and non-immobilised Azolla filiculoides

  • R.V. Fogarty
  • P. Dostalek
  • M. Patzak
  • J. Votruba
  • E. Tel-Or
  • J.M. Tobin
Article

Abstract

Milled-sieved and epichlorhydrin-immobilised Azolla biosorbed ca. 363 and 320 μmol Cu2+ g−1 from a 100 mg l−1 solution. Efficiency of Cu2+ removal by columns was in the order epichlorohydrin-immobilised Azolla>milled-sieved Azolla>untreated Azolla. The 2.5 g epichlorohydrin-immobilised Azolla column demonstrated complete metal sequestration from ca. 12 l of influent 5 mg Cu2+ l−1 and was still at less than 75% saturation even after ca. 22 l had passed through the column. EDTA effectively desorbed Cu2+ with a ca. 55-fold decrease in volume.

biosorption metals immobilised Azolla columns 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akthar MN, Sastry KS, Mohan PM (1995) Biosorption of silver ions by processed Aspergillus niger biomass. Biotechnol. Lett. 17: 551-556.Google Scholar
  2. Baes CF Jr, Mesmer RE (1986) The Hydrolysis of Cations. Florida: Krieger Publishing Company.Google Scholar
  3. Bedell GW, Darnall DW (1990) Immobilisation of nonviable, biosorbent, algal biomass for the recovery of metal ions. In: Volesky B, ed. Biosorption of Heavy Metals. Boca Raton, FL: CRC Press, pp. 314-326.Google Scholar
  4. Brady D, Duncan JR (1994) Bioaccumulation of metal cations by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 41: 149-154.Google Scholar
  5. Brady JM, Tobin JM (1995) Binding of hard and soft metals metal ions to Rhizopus arrhizus biomass. Enzyme Microbiol. Technol. 17: 791-796.Google Scholar
  6. Braun S, Rappoport R, Zusman R, Avnir D, Ottolenghi M (1990) Biochemically active sol-gel glasses: the trapping of enzymes. Material Lett. 10: 1-5.Google Scholar
  7. Dostalek P, Pilarek D, Tobin JM (1994) Biofiltration of heavy metal wastes by technology involving yeast biomass. IUMS Congresses 1994, 7th International Congress, Bacteriology and Applied Microbiology Division, July 3–8, Prague, Czech Republic.Google Scholar
  8. Eccles H (1995) Removal of heavy metals from effluent streams — why select a biological process. Int. Biodet. Biodeg. 8: 5-16.Google Scholar
  9. Fourest E, Roux J-C (1992) Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Appl. Microbiol. Biotechnol. 37: 399-403.Google Scholar
  10. Leusch A, Holan ZR, Volesky B (1995) Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically-reinforced biomass of marine algae. J. Chem. Technol. Biotechnol. 62: 279-288.Google Scholar
  11. Patzak M, Dostalek P, Fogarty RV, Safarik I, Tobin JM (1997) Development of magnetic biosorbents for metal uptake. Biotechnol. Tech. 11: 483-487.Google Scholar
  12. Sahoo DK, Kar RN, Das RP (1992) Bioaccumulation of heavy metal ions by Bacillus circulans. Biores. Technol. 41: 177-179.Google Scholar
  13. Sela M, Garty J, Tel-Or E (1989) The accumulation and the effect of heavy metals on the water fern Azolla filiculoides. New Phytol. 112: 7-12.Google Scholar
  14. Sela M, Fritz E, Huttermann A, Tel-Or E (1990) Studies on cadmium localisation in the water fern Azolla Physiol. Plant. 79: 547-553.Google Scholar
  15. Singleton I, Simmons P (1996) Factors affecting silver biosorption by an industrial strain of Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 65: 21-28.Google Scholar
  16. Tel-Or E, Sela M, Ravid S (1996) Biofiltration of heavy metals by the aquatic fern Azolla. In: Modern Agriculture and the Environment. Dordrecht: Kluwer Academic Publishers, pp. 429-440.Google Scholar
  17. Volesky B (1990) Biosorption by fungal biomass. In: Volesky B, ed. Biosorption of Heavy Metals. Boca Raton, FL: CRC Press, pp. 139-171.Google Scholar
  18. Wilhelmi BS, Duncan, JR (1995) Metal recovery from Saccharomyces cerevisiae biosorption columns. Biotechnol. Lett. 17: 1007-1012.Google Scholar
  19. Zhao M, Duncan JR (1998) Bed-depth-service-time analysis on column removal of Zn2+ using Azolla filiculoides. Biotechnol. Lett. 20: 37-39.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • R.V. Fogarty
    • 1
  • P. Dostalek
    • 2
  • M. Patzak
    • 2
  • J. Votruba
    • 3
  • E. Tel-Or
    • 4
  • J.M. Tobin
    • 1
  1. 1.School of BiotechnologyDublin City UniversityDublinIreland
  2. 2.Dept. of Fermentation and BioengineeringInstitute of Chemical TechnologyPragueCzech Republic
  3. 3.Academy of SciencesPragueCzech Republic
  4. 4.Department of Agricultural BotanyThe Hebrew University of JerusalemRehovotIsrael

Personalised recommendations