Advertisement

Biotechnology Techniques

, Volume 13, Issue 11, pp 749–755 | Cite as

Immobilization of native and dextran-free dextransucrases from Leuconostoc mesenteroides NRRL B-512F for the synthesis of glucooligosaccharides

  • M. Alcalde
  • F.J. Plou
  • A. Gómez de Segura
  • M. Remaud-Simeon
  • R.M. Willemot
  • P. Monsan
  • A. Ballesteros
Article

Abstract

Dextransucrase from Leuconostoc mesenteroides NRRL B-512F was immobilized using two different methods: covalent attachment to activated silica and entrapment in calcium alginate. For immobilization on silica, native enzyme and dextran-free enzyme were compared. However, the entrapment in calcium alginate beads gave the best results in terms of immobilization yield and stability. This biocatalyst was employed in the acceptor reaction with maltose showing similar glucooligosaccharide production than the native enzyme but increased operational stability.

alginate entrapment covalent immobilization dextransucrase glucooligosaccharides Leuconostoc mesenteroides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcalde M, Plou FJ, Martín MT, Remaud M, Monsan P, Ballesteros A (1998) Stability in presence of organic solvents of dextransucrase from Leuconostoc mesenteroides NRRL B-512F immobilized in calcium alginate beads. In: Ballesteros A, Plou FJ, Iborra JL, Halling P, eds. Stability and Stabilization of Biocatalysts. Amsterdam: Elselvier, pp. 135-140.Google Scholar
  2. Buchholz K, Stoppok E, Matalla K, Reh K, Jordening HJ (1991) Enzymatic sucrose modification and saccharide synthesis. In: Lichtenthaler FW, ed. Carbohydrates as Organic Raw Materials. Weinheim: VCH, pp. 155-168.Google Scholar
  3. Chang HN, Ghim YS, Cho YR, Landis D, Reilly PJ (1981) Immobilization of Leuconostoc mesenteroides dextransucrase to porous phenoxyacetyl cellulose beads. Biotechnol. Bioeng. 23: 2647-2653.Google Scholar
  4. Dols M, Remaud-Simeon M, Willemot RM, Demuth B, Jördening HJ, Buchholz K, Monsan P (1999) Kinetic modeling of oligosaccharide synthesis catalyzed by Leuconostoc mesenteroides NRRL B-1299 dextransucrase. Biotechnol. Bioeng. 63: 308-315.Google Scholar
  5. Goyal, A, Katiyar, SS (1998) Chemical modification of dextransucrase from Leuconostoc mesenteroides NRRL B-512F by pyridoxal 5′-phosphatoe: evidence for the presence of an essential lysine residue at the active site. Biochem. Mol. Biol. Int. 44: 1167-1175Google Scholar
  6. Heincke K, Demuth B, Jördening HJ, Buchholz K (1999) Kinetics of the dextransucrase acceptor reaction with maltose — experimental results and modeling. Enzyme Microbiol. Technol. 24: 523-534.Google Scholar
  7. Kobayashi M, Matsuda K (1986) Electrophoretic analysis of the multiple forms of dextransucrase. J. Biochem. 100: 615-621.Google Scholar
  8. Kobs SF (1991) Acceptor activity of affinity-immobilized dextransucrase from Streptococcus sanguis ATCC 10558. Carbohydr. Res. 211: 337-342.Google Scholar
  9. Monsan P, López A (1981) On the production of dextran by free and immobilized dextransucrase. Biotechnol. Bioeng. 23: 2027-2037.Google Scholar
  10. Monsan P, Paul F, Auriol D, López A (1987) Dextran synthesis using immobilized Leuconostoc mesenteroides dextransucrase. Methods Enzymol. 136: 239-254.Google Scholar
  11. Parnaik VK, Luzio GA, Grahame DA, Ditson SL, Mayer RMA (1983) D-glucosylated form of dextransucrase: preparation and characteristics. Carbohydr. Res. 121: 257-268.Google Scholar
  12. Quirasco M, López A, Pelenc V, Remaud M, Paul F, Monsan P (1995) Enzymatic production of oligosaccharides containing α-(1→2) osidic bonds. Ann. N.Y. Acad. Sci. 750: 317-320.Google Scholar
  13. Reischwitz A, Reh DK, Buchholz K (1995) Unconventional immobilization of dextransucrase with alginate. Enzyme Microb. Technol. 17: 457-461.Google Scholar
  14. Remaud-Simeon M, Lopez-Munguia A, Pelenc V, Paul F, Monsan P (1994) Production and use of glucosyltransferases from Leuconostoc mesenteroides NRRL B-1299 for the synthesis of oligosaccharides. Appl. Biochem. Biotechnol. 44: 101-117.Google Scholar
  15. Robyt JF (1996) Mechanism and action of glucansucrases. In: Park KH, Robyt JF, Choi YD, eds. Enzymes for Carbohydrate Bioengineering. Amsterdam: Elselvier, pp. 1-22.Google Scholar
  16. Robyt JF, Walseth TF (1978) The mechanism of acceptor reactions of Leuconostoc mesenteroides B-512F dextransucrase. Carbohydr. Res. 61: 433-445.Google Scholar
  17. Su D, Robyt JF (1993) Control of the synthesis of dextran and acceptor products by Leuconostoc mesenteroides B-512FM dextransucrase. Carbohydr. Res. 248: 339-348.Google Scholar
  18. Sumner JB, Howell SF (1935) A method for determination of invertase activity. J. Biol. Chem. 108: 51-54.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • M. Alcalde
    • 1
  • F.J. Plou
    • 1
  • A. Gómez de Segura
    • 1
  • M. Remaud-Simeon
    • 2
  • R.M. Willemot
    • 2
  • P. Monsan
    • 2
  • A. Ballesteros
    • 1
  1. 1.Instituto de Catálisis, CSIC, Campus UAM CantoblancoMadridSpain
  2. 2.Centre de Bioingénierie Gilbert Durand, UMR CNRS 5504, LA INRA, INSA, Complexe Scientifique de RangueilToulouse cedexFrance

Personalised recommendations