Effects of annealing in O2 and N2 on the microstructure of metal organic chemical vapor deposition Ta2O5 film and the interfacial SiO2 layer

  • Young-Bae Park
  • Xiaodong Li
  • Gap-Jin Nam
  • Shi-Woo Rhee


Ta2O5 films were made by metal organic chemical vapor deposition (MOCVD) and annealed at various temperatures under N2 and O2 ambients in a conventional furnace and a rapid thermal reactor (RTR). The microstructure and composition of the Ta2O5 film and the interfacial SiO2 layer before and after various annealing treatments were studied using X-ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM), and Auger electron spectroscopy (AES). The as-deposited Ta2O5 film has an amorphous structure. The surface topology of the as-deposited Ta2O5 film is smooth without any apparent features. Annealing of the as-deposited film results in crystallization to an orthorhombic structure with (1 0 0) preferred orientation, and an increase in surface roughness, with the appearance of grain boundaries under AFM. The crystallization temperature varies in the various annealing treatments. An interfacial SiO2 layer was found between the as-deposited/annealed Ta2O5 films and silicon substrate. The annealing treatments result in an increase in thickness of the SiO2 layer and roughness changes of the Ta2O5/SiO2/Si interfaces, which are discussed in terms of element diffusion and thermodynamic stability.


Crystallization Surface Roughness Atomic Force Microscopy Silicon Substrate Crystallization Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. R. Hitchens, W. C. Krusell and D. M. Dobkin,J. Electrochem. Soc. 140 (1993) 2615.Google Scholar
  2. 2.
    W. S. Lau, P. W. Qian, N. P. Sandler, K. A. Mckinley and P. K. Chu, Jpn. J. Appl. Phys. 36 (1997) 661.Google Scholar
  3. 3.
    J. H. Yun and S. Rhee, Thin Solid Films 292 (1997) 324.Google Scholar
  4. 4.
    S. C. Sun and T. F. Chen, IEEE Electron Device Lett. 17 (1996) 355.Google Scholar
  5. 5.
    S. Kim and H. J. Kim, Thin Solid Films 253 (1994) 435.Google Scholar
  6. 6.
    Y. Matsui, K. Torii, M. Hirayama, Y. Fujisaki, S. Iijima and Y. Ohji, IEEE Electron Device Lett. 17 (1996) 431.Google Scholar
  7. 7.
    I. Kim, J. Kim, O. Kwon, S. Ahn, J. S. Chun and W. Lee, J. Electron. Mater. 24 (1996) 1435.Google Scholar
  8. 8.
    K. Tominaga, R. Muhammet, J. Kobayashi and M. Okada, Jpn. J. Appl. Phys. 31 (1992) 585.Google Scholar
  9. 9.
    E. P. Burte and N. Rausch, J. Non-Cryst. Solids 187 (1995) 425.Google Scholar
  10. 10.
    S. Kamiyama, H. Suzuki, H. Watanabe, A. Sakai, H. Kimura and J. Mizuki, J. Electrochem. Soc. 141 (1994) 1246.Google Scholar
  11. 11.
    H. Shinriki, T. Ki su, S. Kimura, Y. Ni shioka, Y. Kawamoto and K. Mukai, IEEE Electron Device Lett. 14 (1993) 216.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Young-Bae Park
    • 1
  • Xiaodong Li
    • 1
  • Gap-Jin Nam
    • 1
  • Shi-Woo Rhee
    • 1
  1. 1.Laboratory for advanced material processing (LAMP), Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)PohangKorea

Personalised recommendations