World Journal of Microbiology and Biotechnology

, Volume 16, Issue 3, pp 249–251

A mutant subtilisin E with enhanced thermostability

  • Yonghua Yang
  • Lan Jiang
  • Shengli Yang
  • Liuqin Zhu
  • Yujie Wu
  • Zhenjie Li
Article

Abstract

A mutant subtilisin E with remarkably thermostability is reported. It is more active against the typical substrate s-AAPF-pna than the wild-type subtilisin E. The time required for getting 50% residual activity of Ser236Cys subtilisin E at 60 °C in aqueous solution was approximately 80 min which is 4 times longer than that of wild-type subtilisin E. Similar to the wild-type subtilisin E, the amidase activity of Ser236Cys subtilisin E is dramatically reduced in the presence of dimethylformamide (DMF).

Subtilisin E site-directed mutagenesis thermostability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bryan, P.N., Rollence, M.L., Pantoliano, M.W., Wood, J., Finzel, B.C., Gilliland, G.L., Howard, A.J. & Poulos, T.J. 1986 Protease of enhanced stability: characterization of a thermostable variant of subtilisin. Proteins: Structure, Function & Genetics 1, 326-334.Google Scholar
  2. Chen, K. & Arnold, F.H. 1991 Enzyme engineering for nonaqueous solvents: random mutagenesis to enhance activity of subtilisin E in polar organic media. Biotechnology 9, 1073-1077.Google Scholar
  3. Estell, D.A., Graycar, T.P. & Wells, J.A. 1985 Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. Journal of Biological Chemistry 260, 6518-6521.Google Scholar
  4. Guo, X.H., Xiong, Z., Zhou, M. & Jia, S.F. 1991 The construction shuttle vectors of Bacillus subtilis-Escherichia coli. Chinese Journal of Biotechnology 7, 224-229.Google Scholar
  5. Kawamura, H. & Doi, R.H. 1984 Construction of a Bacillus subtilis double mutant deficient in extracellular alkaline and neutral proteases. Journal of Bacteriology 160, 442-444.Google Scholar
  6. Kidd, R.D., Yennawar, H.P., Sears, P., Wong, C.H. & Farber, G.K. 1996 A weak calcium binding site in subtilisin BPN' has a dramatic e.ect on protein stability. Journal of the American Chemical Society 118, 1645-1650Google Scholar
  7. Pantiliano, M.W., Whitlow, M., Wood, J.F., Dodd, S.W., Hardman, K.D., Rollence, M.L. & Bryan, P.N. 1989 Large increases in general stability for subtilisin BPN' through incremental changes in the free energy of unfolding. Biochemistry 28, 7205-7213.Google Scholar
  8. Takagi, H. 1993 Protein engineering on subtilisin. International Journal of Biochemistry 25, 307-312.Google Scholar
  9. Takagi, H., Arafuka, S., Inouye, M. & Yamasaki, M. 1992 The effect of amino acid deletion in subtilisin E, based on structural comparison with a microbial alkaline elastase, on its substrate specificity and catalysis. Journal of Biochemistry 111, 584-588.Google Scholar
  10. Takagi, H., Morinaga, Y., Ikemura, H. & Inouye, M. 1988 Mutant subtilisin E with enhanced protease activity obtained by site-directed mutagenesis. Journal of Biological Chemistry 263, 19592-19596.Google Scholar
  11. Takagi, H., Takahashi, T., Momose, H., Inouye, M. Maeda, Y., Matsuzawa, H. & Ohta, T. 1990 Enhancement of the thermostability of subtilisin E by introduction of a disul®de bond engineered on the basis of structural comparison with a thermophilic serine protease. Journal of Biological Chemistry 265, 6874-6878.Google Scholar
  12. Takagi, H., Yamamoto, M., Ohtsu, I. & Nakamori, S. 1998 Random mutagenesis into the conserved Gly154 subtilisin E: isolation and characterization of the revertant enzymes. Protein Engineering 11, 1205-1210.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Yonghua Yang
    • 1
  • Lan Jiang
    • 1
  • Shengli Yang
    • 1
  • Liuqin Zhu
    • 2
  • Yujie Wu
    • 2
  • Zhenjie Li
    • 2
  1. 1.Shanghai Research Center of BiotechnologyAcademia SinicaShanghaiChina
  2. 2.Institute of BiophysicsAcademia SinicaBeijingChina

Personalised recommendations