New starch-based thermoplastic hydrogels for use as bone cements or drug-delivery carriers

  • C. S. Pereira
  • A. M. Cunha
  • R. L. Reis
  • B. VÁzquez
  • J. San RomÁn
Article

Abstract

The development of new biodegradable hydrogels, based on corn starch/cellulose acetate blends, produced by free-radical polymerization with methyl methacrylate monomer (MMA) and/or an acrylic acid monomer (AA), is reported. The polymerization was initiated by a redox system consisting of a benzoyl peroxide and 4-dimethlyaminobenzyl alcohol at low temperature. These hydrogels may constitute an alternative to the materials currently used as bone cements or drug-delivery carriers. Swelling studies were carried out, as a function of pH and temperature, in buffered solutions. The xerogels were further characterized by Fourier transform–infrared spectroscopy. Tensile and compression tests, and dynamic mechanical thermal analysis were used to assess the mechanical performance of the developed materials. The fracture surfaces were observed by scanning electron microscopy. The developed materials are sensitive to the pH, showing a clear reversible transition in a relatively narrow interval of pH, which is just in the range of physiological conditions. These properties make the materials developed in this study very promising for biomedical applications. Fickian-type diffusion is the mechanism predominant in these systems, except for the composition with a higher concentration of AA, that corresponds to the most desirable kinetical behavior for controlled release (case II-transport mechanism). Furthermore, the results obtained in the mechanical tests are in the range of those reported for typical PMMA bone cements, showing that it is possible to develop partially degradable cements with an adequate mechanical behavior. © 1998 Kluwer Academic Publishers

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. A. Peppas and A. G. Mikos, in “Hydrogels in Medicine and Pharmacy-Fundamentals”, Vol. I, edited by N. A. Peppas (CRC Press, Boca Raton, FL, 1988) p. 1.Google Scholar
  2. 2.
    P. A. Netti, J. C. Shelton, P. A. Revell, C. Pirie, S. Smith, L. Ambrosio, L. Nicolais and W. Bonfield, Biomaterials 14 (1993) 1098.Google Scholar
  3. 3.
    S. Woerly, ibid. 14 (1993) 1056.Google Scholar
  4. 4.
    N. A. Peppas, in “Biomaterials Science–An Introduction to Materials in Medicine-Part I”, edited by B. D. Ratner, A. S. Hoffman, F. J. Schoen and J. E. Lemons (Academic Press, London, 1996) p. 60.Google Scholar
  5. 5.
    B. Pascual, I. Castellano, B. VÁzquez, M. Gurruchaga and I. GoÑi, Polymer 37 (1996) 1005.Google Scholar
  6. 6.
    E. J. Mack, T. Okano and S. W. Kim, in “Hydrogels in Medicine and Pharmacy-Polymers”, Vol. II, edited by N. A. Peppas (CRC Press, Boca Raton, FL, 1988) p. 65.Google Scholar
  7. 7.
    E. Karadag, D. Saraydin, S. Çetinkaya and O. Guven, Biomaterials 17 (1996) 67.Google Scholar
  8. 8.
    S. W. Kim, Y. H. Bae and T. Okano, Pharmaceut. Res. 9 (1992) 283.Google Scholar
  9. 9.
    M. D. Blanco, O. GarcÍa, R. M. Trigo, J. M. Teijon and I. Katime, Biomaterials 17 (1996) 1061.Google Scholar
  10. 10.
    A. Abusafieh, S. Siegler and S. R. Kalidindi, J. Biomed. Res. 38 (1997) 314.Google Scholar
  11. 11.
    T. L. Norman, V. Kish, J. D. Blaha, T. A. Gruen and K. Hustosky, J. Biomed. Mater. Res. 29 (1995) 495.Google Scholar
  12. 12.
    J. Yang, Biomaterials 18 (1997) 1293.Google Scholar
  13. 13.
    G. Lewis, J. S. Nyman and H. H. Trieu,, J.Biomed. Mater. Res. 38 (1997) 221.Google Scholar
  14. 14.
    G. Lewis, ibid. 38 (1997) 155.Google Scholar
  15. 15.
    A. J. Domb, N. Manor and O. Elmalak, Biomaterials 17 (1996) 411.Google Scholar
  16. 16.
    J. Kost and R. Langer, in “Hydrogels in Medicine and Pharmacy-Properties and Applications”, Vol. III, edited by N. A. Peppas (CRC Press, Boca Raton, FL, 1988) p. 95.Google Scholar
  17. 17.
    D. Lohmann, Macromol. Symp. 100 (1995) 25.Google Scholar
  18. 18.
    Y. Ogawa, J.Biomater. Sci. Polymer Edn 8 (1997) 391.Google Scholar
  19. 19.
    L. Di Silvio, N. Gurav, M. V. Kayser, M. Braden and S. Downes, Biomaterials 15 (1994) 931.Google Scholar
  20. 20.
    A. G. Andreopoulos, Clin. Mater. 15 (1994) 691.Google Scholar
  21. 21.
    R. Langer, MRS Bull. (1995) 18.Google Scholar
  22. 22.
    J. Heller, in “Applications of Materials in Medicine and Dentistry-Part II”, edited by B. D. Ratner, A. S. Hoffman, F. J. Schoen and J. E. Lemons (Academic Press, London, 1996) p. 346.Google Scholar
  23. 23.
    C. Bastioli, in “Recycle'94–Davos Global Forum and Exposition”, Switzerland, March 1994.Google Scholar
  24. 24.
    Idem, in “Degradadble Polymers-Principles and Applications” (Chapman and Hall, London, 1995) p. 112.Google Scholar
  25. 25.
    R. L. Reis, A. M. Cunha, J. Mater. Sci. Mater. Med. 6 (1995) 786.Google Scholar
  26. 26.
    R. L. Reis, A. M. Cunha, P. S. Allan and M. J. Bevis, Polym. Adv. Technol. 7 (1996) 784.Google Scholar
  27. 27.
    R. L. Reis, S. C. Mendes, A. M. Cunha and M. J. Bevis, Polym. Int. 43 (1997) 347.Google Scholar
  28. 28.
    R. L. Reis, A. M. Cunha, P. S. Allan and M. J. Bevis, Adv. Poly. Technol. 16 (1997) 263.Google Scholar
  29. 29.
    R. L. Reis, A. M. Cunha and M. J. Bevis, Med. Plast. Biomateri. (1997) 46.Google Scholar
  30. 30.
    C. S. Pereira, M. E. Gomes, R. L. Reis and A. M. Cunha, in “Foams, Emulsion and Cellular Materials”, edited by J. F. Sadoc and N. River (NATO/ASI series, Kluwer Press, Dordrecht, 1998) in press.Google Scholar
  31. 31.
    R. L. Reis and A. M. Cunha, in “Antec'98–Plastics on My Mind”, Society of Plastics Engieers, Atlanta, April/May 1998, in press.Google Scholar
  32. 32.
    Idem, ibid.Google Scholar
  33. 33.
    C. Elvira, B. Levenfeld, B. VÁzquez and J. San romÁn, J. Polym. Sci. A Polym. Chem. 34 (1996) 2783.Google Scholar
  34. 34.
    P. A. Liso. B. VÁzquez, M. Rebuelta, M. L. HernÁez, R. Rotger and J. San, Biomaterials 18 (1997) 15.Google Scholar
  35. 35.
    B. VÁzquez, C. Elvira, B. Levenfeld, B. Pascual, I. Gonñi, M. Gurruchaga, M. P. Ginerba, F. X. Gil, J. A. Planell, P. A. Liso, M. Rebuelta and J. San rÓman, J.Biomed. Mater. Res. 34 (1997) 129.Google Scholar
  36. 36.
    B. VÁzquez, C. Elvira, J. San RomÁn and B. Levenfeld, Polymer 38 (1997) 4365.Google Scholar
  37. 37.
    I. Castellano, B. Pascual, B. VÁzquez, I. Gonñi and M. Gurrruchaga, J. Appl. Polym. Sci. 54 (1994) 577.Google Scholar
  38. 38.
    J. Jane, J.M.S. Pure Appl. Chem. A32 (1995) 751.Google Scholar
  39. 39.
    N. A. Peppas and R. W. Korsmeyer, in “Medicine and Pharmacy-Properties and Applications”, Vol. III, edited by N. A. Peppas (CRC Press, Boca Raton, FL, 1988) p. 109.Google Scholar
  40. 40.
    S. Saha and S. Pal, J.Biomed. Mater. Res. 18 (1984) 435.Google Scholar
  41. 41.
    E. P. Lautenschlager, B. K. Moore and C.M. Schoenfeld, J.Biomed. Mater. Res. Symp. (1974) 185.Google Scholar
  42. 42.
    C. Migiaresi, L. Fambri and J. Kolanik, Biomaterials 15 (1994) 875.Google Scholar
  43. 43.
    L. D. T. Topoleski, P. Ducheyne and J. M. Cuckler, ibid. 14 (1993) 1165.Google Scholar
  44. 44.
    R. L. Clarke, ibid. 10 (1989) 494.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • C. S. Pereira
    • 1
  • A. M. Cunha
    • 2
  • R. L. Reis
    • 1
  • B. VÁzquez
    • 3
  • J. San RomÁn
    • 3
  1. 1.INEB-Institute for Biomedical EngineeringBiomaterials LaboratoryPortoPortugal
  2. 2.Department of Polymer EngineeringUniv. Minho, Campus AzúremGuimarãesPortugal
  3. 3.CSIC-Institute for Science and Technology of PolymersMadridSpain

Personalised recommendations