Advertisement

Improvement of haemocompatibility of metallic stents by polymer coating

  • J. Lahann
  • D. Klee
  • H. Thelen
  • H. Bienert
  • D. Vorwerk
  • H. Ho¨cker
Article

Abstract

An alternative to open heart surgery in treating arterial diseases causing restricted blood flow is the implantation of intracoronary metallic stents. In spite of the advances in implantation and in spite of the excellent mechanical properties of metallic stents, there are still limitations because of the thrombogenicity of the metal. We have, hence, directed our attention to the coating of metallic stents with an ultrathin polymer layer by chemical vapor deposition (CVD) polymerization of 2-chloroparacyclophan. In a second step of surface modification the poly(2-chloroparaxylylene) layer is modified by treatment with a sulfur dioxide plasma in order to obtain a more hydrophilic surface with new functional groups. The results demonstrate the stable polymer coating of the stents and the improvement of haemocompatibility after treatment with sulfur dioxide plasma. Platelet adhesion is decreased from 85% for the metal surface to 20% for the CVD-coated and sulfur-dioxide-plasma treated surface. © 1999 Kluwer Academic Publishers

Keywords

Polymer Blood Flow Chemical Vapor Deposition Metal Surface Surface Modification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Peng, P. Gibula, K. Yao and M. F. A. Goosen, Biomaterials 176 (1996) 685.Google Scholar
  2. 2.
    D. L. Fischman, M. B. Leon, D. S. Baim, R. A. Schatz, M. P. Savage, I. Penn, K. Detre, L. Veltri, D. Ricci and M. Nobuyashi, N. Engl. J. Med. 331 (1994) 496.Google Scholar
  3. 3.
    V. A. Depalma, F. J. W. Bauerre, V. L. Gett and A. Furse, J. Biomed. Mater. Res. Symp. 3 (1972) 37.Google Scholar
  4. 4.
    P. A. Ribeiro, R. Gallo, J. Antonius, L. Mimish, R. Sriram, S. Bianchi and C. G. Duran, Amer. Heart J. 125 (1993) 501.Google Scholar
  5. 5.
    J. C. Palmax, Amer. J. Radiol. 160 (1993) 613.Google Scholar
  6. 6.
    T. Yoshika, D. Mirch, K. C. Wright and S. Wallace, ibid. 15 (1988) 673.Google Scholar
  7. 7.
    I. K. De scheerder, K. L. Wilzek, E. V. Verbeken, J. Vandorpe, P. N. Lan, E. Schacht, H. De gesst and J. Piessens, Atheresclerosis 114 (1995) 105.Google Scholar
  8. 8.
    T. Roeren, O. J. Garcia, J. C. Palmaz, C. R. Rees and F. O. Tio, Radiology 174 (1990) 1069.Google Scholar
  9. 9.
    S. G. Eskin, C. D. Armeniades, J. T. Lie, L. Trevino and J. H. Kennedy, J. Biomed. Mater. Res. 10 (1976) 113.Google Scholar
  10. 10.
    M. F. Nicholas, Biomedi. Sci. Instrum. 29 (1993) 79.Google Scholar
  11. 11.
    D. Klee, R. V. Vilari, H. HÖcker, B. Dekker and C. Mittermayer, J. Mater. Sci. Mater. Med. 5 (1994) 592.Google Scholar
  12. 12.
    J. B. Miale, in “Laboratory medicine hematology,” sixth edition, (C. V. Mosby, St. Louis, 1982) p. 1084.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • J. Lahann
    • 1
  • D. Klee
    • 1
  • H. Thelen
    • 1
  • H. Bienert
    • 1
  • D. Vorwerk
    • 2
  • H. Ho¨cker
    • 1
  1. 1.Department of Textile and Macromolecular Chemistry, Medical Faculty, RWTH AachenAachenGermany
  2. 2.Department of Radiological Sciences, Medical Faculty, RWTH AachenAachenGermany

Personalised recommendations