Advertisement

Autonomous Robots

, Volume 8, Issue 3, pp 325–344 | Cite as

A Probabilistic Approach to Collaborative Multi-Robot Localization

  • Dieter Fox
  • Wolfram Burgard
  • Hannes Kruppa
  • Sebastian Thrun
Article

Abstract

This paper presents a statistical algorithm for collaborative mobile robot localization. Our approach uses a sample-based version of Markov localization, capable of localizing mobile robots in an any-time fashion. When teams of robots localize themselves in the same environment, probabilistic methods are employed to synchronize each robot's belief whenever one robot detects another. As a result, the robots localize themselves faster, maintain higher accuracy, and high-cost sensors are amortized across multiple robot platforms. The technique has been implemented and tested using two mobile robots equipped with cameras and laser range-finders for detecting other robots. The results, obtained with the real robots and in series of simulation runs, illustrate drastic improvements in localization speed and accuracy when compared to conventional single-robot localization. A further experiment demonstrates that under certain conditions, successful localization is only possible if teams of heterogeneous robots collaborate during localization.

mobile robots localization multi-robot systems uncertainty 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkin, R.C. and Balch, T. 1998. Cooperative multiagent robotic systems. In Artificial Intelligence and Mobile Robots, D. Kortenkamp, R.P. Bonasso, and R. Murphy (Eds.), MIT/AAAI Press: Cambridge, MA.Google Scholar
  2. Betke, M. and Gurvits, L. 1993. Mobile robot localization using landmarks. Technical Report SCR-94-TR-474, Siemens Corporate Research, Princeton. Will also appear in the IEEE Transactions on Robotics and Automation.Google Scholar
  3. Borenstein, J. 1987. The nursing robot system. Ph.D. Thesis, Technion, Haifa, Israel.Google Scholar
  4. Borenstein, J. 1995. Control and kinematic design of multi-degreeof-freedom robots with compliant linkage. IEEE Transactions on Robotics and Automation, 11:21–35.Google Scholar
  5. Borenstein, J., Everett, B., and Feng, L. 1996. Navigating Mobile Robots: Systems and Techniques, A.K. Peters, Ltd.: Wellesley, MA.Google Scholar
  6. Boyen, X. and Koller, D. 1999. Exploiting the architecture of dynamic systems. In Proc.of the National Conference on Artificial Intelligence (AAAI).Google Scholar
  7. Burgard, W., Cremers, A.B., Fox, D., H¨ahnel, D., Lakemeyer, G., Schulz, D., Steiner, W., and Thrun, S. Experiences with an interactive museum tour-guide robot. Artificial Intelligence, 114(1/2), 2000.Google Scholar
  8. Burgard, W., Derr, A., Fox, D., and Cremers, A.B. 1998. Integrating global position estimation and position tracking for mobile robots: The Dynamic Markov Localization approach. In Proc.of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Google Scholar
  9. Burgard, W., Fox, D., Hennig, D., and Schmidt, T. 1996. Estimating the absolute position of a mobile robot using position probability grids. In Proc.of the National Conference on Artificial Intelligence (AAAI).Google Scholar
  10. Burgard, W., Fox, D., and Thrun, S. 1997. Active mobile robot localization. In Proc.of the International Joint Conference on Artificial Intelligence (IJCAI).Google Scholar
  11. Cao, Y.U., Fukunaga, A.S., and Kahng, A.B. 1997. Cooperative mobile robotics: Antecedents and directions. Autonomous Robots, 4:1–23.Google Scholar
  12. Carpenter, J., Clifford, P., and Fernhead, P. 1997. An improved particle filter for non-linear problems. Technical report, Department of Statistics, University of Oxford.Google Scholar
  13. Collet, T.S. and Cartwright, B.A. 1985. Landmark learning in bees. Journal of Comparative Physiology.Google Scholar
  14. Cox, I.J. 1991. Blanche—An experiment in guidance and navigation of an autonomous robot vehicle. IEEE Transactions on Robotics and Automation, 7(2):193–204.Google Scholar
  15. Cox, I.J. and Wilfong, G.T. (Eds.). 1990.Autonomous Robot Vehicles. Springer Verlag.Google Scholar
  16. Dean, T.L. and Boddy,M. 1988. An analysis of time-dependent planning. In Proc.of the National Conference on Artificial Intelligence (AAAI), pp. 49–54.Google Scholar
  17. Dellaert, F., Fox, D., Burgard, W., and Thrun, S. 1999. Monte Carlo localization for mobile robots. In Proc.of the IEEE International Conference on Robotics & Automation (ICRA).Google Scholar
  18. Doucet, A. 1998. On sequential simulation-based methods for Bayesian filtering. Technical Report CUED/F-INFENG/TR.310, Department of Engineering, University of Cambridge.Google Scholar
  19. Engelson, S. 1994. Passivemaplearning and visual place recognition. Ph.D. Thesis, Department of Computer Science, Yale University.Google Scholar
  20. Everett, H.R., Gage, D.W., Gilbreth, G.A., Laird, R.T., and Smurlo, R.P. 1994. Real-world issues in warehouse navigation. In Proc.of the SPIE Conference on Mobile Robots IX, Boston, MA, Vol. 2352.Google Scholar
  21. Fox, D., Burgard, W., Dellaert, F., and Thrun, S. 1999a. Monte Carlo localization: Efficient position estimation for mobile robots. In Proc.of the National Conference on Artificial Intelligence (AAAI).Google Scholar
  22. Fox, D., Burgard, W., and Thrun, S. 1998a. Active Markov localization for mobile robots. Robotics and Autonomous Systems, 25:195–207.Google Scholar
  23. Fox, D., Burgard, W., and Thrun, S. 1999b. Markov localization for mobile robots in dynamic environments. Journal of Artificial Intelligence Research, 11.Google Scholar
  24. Fox, D., Burgard, W., Thrun, S., and Cremers, A.B. 1998b. Position estimation for mobile robots in dynamic environments. In Proc.of the National Conference on Artificial Intelligence (AAAI).Google Scholar
  25. Fukuda, T., Ito, S., Oota, N., Arai, F., Abe, Y., Tanake, K., and Tanaka, Y. 1993. Navigation system based on ceiling landmark recognition for autonomous mobile robot. In Proc.of the International Conference on Industrial Electronics Control and Instrumentation (IECON), Vol. 1, pp. 1466–1471.Google Scholar
  26. Gordon, N.J., Salmond, D.J., and Smith, A.F.M. 1993. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings F, 140(2):107–113.Google Scholar
  27. Greiner, R. and Isukapalli, R. 1994. Learning to select useful landmarks. In Proc.of the National Conference on Artificial A Probabilistic Approach to Collaborative Multi-Robot Localization 343 Intelligence (AAAI), AAAI Press/The MIT Press: Menlo Park, CA, pp. 1251–1256.Google Scholar
  28. Gutmann, J.-S. and Schlegel, C. 1996. AMOS: Comparison of scan matching approaches for self-localization in indoor environments. In Proc.of the 1st Euromicro Workshop on Advanced Mobile Robotss, IEEE Computer Society Press.Google Scholar
  29. Gutmann, J.-S., Weigel, T., and Nebel, B. 1999. Fast, accurate, and robust self-localization in polygonal environments. In Proc.of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Google Scholar
  30. Hinkel, R. and Knieriemen, T. 1988. Environment perception with a laser radar in a fast moving robot. In Proc.of Symposium on Robot Control, Karlsruhe, Germany, pp. 68.1–68.7.Google Scholar
  31. Horswill, I. 1994. Specialization of perceptual processes. Technical Report AI TR-1511, MIT, AI Lab, Cambridge, MA.Google Scholar
  32. Isard, M. and Blake, A. 1996. Contour tracking by stochastic propagation of conditional density. In Proc.of European Conference on Computer Vision (ECCV), pp. 343–356.Google Scholar
  33. Isard, M. and Blake, A. 1998. Condensation—conditional density propagation for visual tracking. International Journal of Computer Vision, 29(1):5–28.Google Scholar
  34. Kaelbling, L.P., Cassandra, A.R., and Kurien, J.A. 1996. Acting under uncertainty: Discrete Bayesian models for mobile-robot navigation. In Proc.of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Google Scholar
  35. Kanazawa, K., Koller, D., and Russell, S.J. 1995. Stochastic simulation algorithms for dynamic probabilistic networks. In Proc.of the 11th Annual Conference on Uncertainty in AI (UAI), Montreal, Canada.Google Scholar
  36. rKing, S. and Weiman, C. 1990. Helpmate autonomous mobile robot navigation system. In Proc.of the SPIE Conference on Mobile Robots, Vol. 2352, Boston, MA, pp. 190–198.Google Scholar
  37. Kitagawa, G. 1996. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, 5(1).Google Scholar
  38. Koller, D. and Fratkina, R. 1998. Using learning for approximation in stochastic processes. In Proc.of the International Conference on Machine Learning (ICML).Google Scholar
  39. Konolige, K. 1999. Markov localization using correlation. In Proc.of the International Joint Conference on Artificial Intelligence (IJCAI).Google Scholar
  40. Kortenkamp, D., Bonasso, R.P., and Murphy, R. (Eds.). 1998. AIBased Mobile Robots: Case Studies of Successful Robot Systems, MIT Press: Cambridge, MA.Google Scholar
  41. Kortenkamp, D. and Weymouth, T. 1994. Topological mapping for mobile robots using a combination of sonar and vision sensing. In Proc.of the National Conference on Artificial Intelligence (AAAI).Google Scholar
  42. Kruppa, H. 1999. Relative multi-robot localization: A probabilistic approach. Master's Thesis, ETH Z¨urich.Google Scholar
  43. Kurazume, R. and Shigemi, N. 1994. Cooperative positioning with multiple robots. In Proc.of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Google Scholar
  44. Leonard, J.J. and Durrant-Whyte, H.F. 1992. Directed Sonar Sensing for Mobile Robot Navigation, Kluwer Academic Publishers: Boston, MA.Google Scholar
  45. Leonard, J.J., Durrant-Whyte, H.F., and Cox, I.J. 1992. Dynamic map building for an autonomous mobile robot. International Journal of Robotics Research, 11(4):89–96.Google Scholar
  46. Lu, F. and Milios, E. 1997. Globally consistent range scan alignment for environment mapping. Autonomous Robots, 4:333–349.Google Scholar
  47. Matari´c, M.J. 1990. A distributed model for mobile robot environment-learning and navigation. Master's Thesis, MIT, Cambridge, MA: Also available as MIT AI Lab Tech Report AITR-1228.Google Scholar
  48. Maybeck, P.S. 1990. The Kalman filter: An introduction to concepts. In Cox and Wilfong (1990).Google Scholar
  49. Moore, A.W., Schneider, J., and Deng, K. 1997. Efficient locally weighted polynomial regression predictions. In Proc.of the International Conference on Machine Learning (ICML), Morgan Kaufmann Publishers.Google Scholar
  50. Neven, H. and Sch¨oner, G. 1996. Dynamics parametrically controlled by image correlations organize robot navigation. Biological Cybernetics, 75:293–307.Google Scholar
  51. Nourbakhsh, I., Powers, R., and Birchfield, S. 1995. DERVISH an office-navigating robot. AI Magazine, 16(2).Google Scholar
  52. Omohundro, S.M. 1987. Efficient algorithms with neural network behavior. Journal of Complex Systems, 1(2).Google Scholar
  53. Omohundro, S.M. 1991. Bumptrees for efficient function, constraint, and classification learning. In Advances in Neural Information Processing Systems 3, R.P. Lippmann, J.E. Moody, and D.S. Touretzky (Eds.), Morgan Kaufmann.Google Scholar
  54. Oore, S., Hinton, dG.E., and Dudek, G. 1997. A mobile robot that learns its place. Neural Computation, 9.Google Scholar
  55. Peters, L., Surmann, H., Guo, S., Beck, K., and Huser, J. 1994. MORIA—Fuzzy Logik gesteuertes, autonomes Fahrzeug. In German.Google Scholar
  56. Rekleitis, I.M., Dudek, G., and Milios, E. 1997. Multi-robot exploration of an unknown environment, efficiently reducing the odometry error. In Proc.of the International Joint Conference on Artificial Intelligence (IJCAI).Google Scholar
  57. Rencken, W.D. 1993. Concurrent localisation and map building for mobile robots using ultrasonic sensors. In Proc.of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Google Scholar
  58. Rubin, D.B. 1988. Using the SIR algorithm to simulate posterior distributions. In Bayesian Statistics 3. M.H. Bernardo, K.M. an De-Groot, D.V. Lindley, and A.F.M. Smith (Eds.), Oxford University Press: Oxford, UK.Google Scholar
  59. Schiele, B. and Crowley, J.L. 1994. A comparison of position estimation techniques using occupancy grids. In Proc.of the IEEE International Conference on Robotics & Automation (ICRA).Google Scholar
  60. Schulz, D., Burgard, W., and Cremers, A.B. 1999. Robust visualization of navigation experiments with mobile robots over the internet. In Proc.of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Google Scholar
  61. Shatkey, H. and Kaelbling, L.P. 1997. Learning topological maps with weak local odometric informations. In Proc.of the International Joint Conference on Artificial Intelligence (IJCAI).Google Scholar
  62. Simmons, R. and Koenig, S. 1995. Probabilistic robot navigation in partially observable environments. In Proc.of the International Joint Conference on Artificial Intelligence (IJCAI).Google Scholar
  63. Smith, R., Self, M., and Cheeseman, P. 1990Estimating uncertain spatial relationships in robotics. In Autonomous Robot Vehicles, I. Cox and G. Wilfong (Eds.), Springer Verlag, pp. 167–193.Google Scholar
  64. Tanner, M.A. 1993. Tools for Statistical Inference, 2nd (Ed.), Springer Verlag: New York.Google Scholar
  65. Thrun, S. 1998a. Bayesian landmark learning for mobile robot localization. Machine Learning, 33(1):41–76.Google Scholar
  66. Thrun, S. 1998b. Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence, 99(1):27–71.Google Scholar
  67. Thrun, S., Bennewitz, M., Burgard, W., Cremers, A.B. Dellaert, F., Fox, D., H¨ahnel, D., Rosenberg, C., Schulte, J., and Schulz, D. 1999a. MINERVA: A second-generation museum tour-guide robot. In Proc.of the International Conference on Robotics and Automation (ICRA' 99).Google Scholar
  68. Thrun, S., Fox, D., and Burgard, W. 1998. A probabilistic approach to concurrent mapping and localization for mobile robots. Machine Learning, 31:29–53. Also appeard in Autonomous Robots 5, pp. 253–271, joint issue.Google Scholar
  69. Thrun, S., Langford, J., and Fox, D. 1999b. Monte Carlo hidden Markov models: Learning non-parametric models of partially observable stochastic processes. In Proc.of the International Conference on Machine Learning (ICML).Google Scholar
  70. Weiß, G., Wetzler, C., and von Puttkamer, E. 1994. Keeping track of position and orientation of moving indoor systems by correlation of range-finder scans. In Proc.of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Google Scholar
  71. Wolfart, E., Fisher, R.B., and Walker, A. 1995. Position refinement for a navigating robot using motion information based on honey bee strategies. In Proc.of the International Symposium on Robotic Systems (SIR 95), Pisa, Italy.Google Scholar
  72. Zilberstein, S. and Russell, S. 1995. Approximate reasoning using anytime algorithms. In Imprecise and Approximate Computation, S. Natarajan (Ed.), Kluwer Academic Publishers: Dordrecht.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Dieter Fox
    • 1
  • Wolfram Burgard
    • 2
  • Hannes Kruppa
    • 3
  • Sebastian Thrun
    • 4
  1. 1.School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Computer ScienceUniversity of FreiburgFreiburgGermany
  3. 3.Department of Computer ScienceETH ZürichZürichSwitzerland
  4. 4.School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations