Journal of Computational Neuroscience

, Volume 9, Issue 1, pp 31–47 | Cite as

Comparison of Alternative Designs for Reducing Complex Neurons to Equivalent Cables

  • R.E. Burke


Reduction of the morphological complexity of actual neurons into accurate, computationally efficient surrogate models is an important problem in computational neuroscience. The present work explores the use of two morphoelectrotonic transformations, somatofugal voltage attenuation (AT cables) and signal propagation delay (DL cables), as bases for construction of electrotonically equivalent cable models of neurons. In theory, the AT and DL cables should provide more accurate lumping of membrane regions that have the same transmembrane potential than the familiar equivalent cables that are based only on somatofugal electrotonic distance (LM cables). In practice, AT and DL cables indeed provided more accurate simulations of the somatic transient responses produced by fully branched neuron models than LM cables. This was the case in the presence of a somatic shunt as well as when membrane resistivity was uniform.

electrotonic models voltage transients attenuation voltage propagation delay 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agmon-Snir H (1995) A novel theoretical approach to the analysis of dendritic transients. Biophys. J. 69:1633-1656.Google Scholar
  2. Agmon-Snir H, Segev I (1993) Signal delay and input synchronization in passive dendritic structures. J. Neurophysiol. 70:2066-2085.Google Scholar
  3. Burke RE (1997) Equivalent cable representations of dendritic trees: Variations on a theme. Soc. Neurosci. Abstr. 23:654 (Abstr # 261.16).Google Scholar
  4. Burke RE, Fyffe REW, Moschovakis AK (1994) Electrotonic architecture of cat gamma motoneurons. J. Neurophysiol. 72:2302-2316.Google Scholar
  5. Bush PC, Sejnowski TJ (1993) Reduced compartmental models of neocortical pyramidal cells. J. Neurosci. Meth. 46:159-166.Google Scholar
  6. Clements J, Redman S (1989) Cable properties of cat spinal motoneurones measured by combining voltage clamp current clamp and intracellular staining. J. Physiol. (Lond.) 409:63-87.Google Scholar
  7. Clements JD (1986) Synaptic Transmission and Integration in Spinal Motoneurones. Ph.D. thesis, Australian National University, Canberra.Google Scholar
  8. Cullheim S, Fleshman JW, Glenn LL, Burke RE (1987a) Membrane area and dendritic structure in type-identified triceps surae alpha-motoneurons. J. Comp. Neurol. 255:68-81.Google Scholar
  9. Cullheim S, Fleshman JW, Glenn LL, Burke RE (1987b) Three-dimensional architecture of dendritic trees in type-identified alpha-motoneurons. J. Comp. Neurol. 255:82-96.Google Scholar
  10. De Schutter E (1992) A consumer guide to neuronal modeling software. Trends Neurosci. 15:462-464.Google Scholar
  11. Douglas RJ, Martin KAC (1992) Exploring cortical microcircuits: A combined anatomical, physiological, and computational approach In: McKenna T, Davis J, Zornetzer SF, eds. Single Neuron Computation. Academic Press, New York. pp. 381-412.Google Scholar
  12. Durand D (1984) The somatic shunt cable model for neurons. Biophys. J. 46:645-653.Google Scholar
  13. Evans JD, Kember GC (1998) Analytical solutions to a tapering multicylinder somatic shunt cable model for passive neurons. Math. Biosciences 149:137-165.Google Scholar
  14. Fleshman JW, Segev I, Burke RE (1988) Electrotonic architecture of type-identified alpha-motoneurons in the cat spinal cord. J. Neurophysiol. 60:60-85.Google Scholar
  15. Holmes W, Rall W (1992) Electrotonic length estimates in neurons with dendritic tapering or somatic shunt. J. Neurophysiol. 68:1421-1437.Google Scholar
  16. Iansek R, Redman SJ (1973) An analysis of the cable properties of spinal motoneurones using a brief intracellular current pulse. J. Physiol. (Lond.) 234:613-636.Google Scholar
  17. Koch C, Segev I, eds. (1998) Methods in Neuronal Modeling. MIT Press, Cambridge, MA.Google Scholar
  18. Major G, Evans JD, Jack JJ (1993) Solutions for transients in arbitrarily branching cables: I. Voltage recording with a somatic shunt (published errata appear in Biophys. J. (August 1993) 65(2):982-983 and (November 1993) 65(5):2266). Biophys. J. 65:423-549.Google Scholar
  19. Moschovakis AK, Burke RE, Fyffe REW (1991) The size and dendritic structure of HRP-labeled gamma-motoneurons in the cat spinal cord. J. Comp. Neurol. 311:531-545.Google Scholar
  20. Ogden JM, Rosenberg JR, Whitehead RR (1999) The Lanczos procedure for generating equivalent cables In: Poznanski RR, ed. Mathematical Modeling in the Neurosciences: From Ionic Channels to Neural Networks. Harwood Academic Press. Amsterdam pp. 177-229.Google Scholar
  21. Ohme M, Schierwagen A (1998) An equivalent cable model for neuronal trees with active membrane. Biol. Cybern. 78:227-243.Google Scholar
  22. Poznanski R (1996) Transient response in a tapering cable model with somatic shunt. NeuroReport 7:1700-1704.Google Scholar
  23. Rall W (1959) Branching dendritic trees and motoneuron membrane resistivity. Exp. Neurol. 1:491-527.Google Scholar
  24. Rall, W. (1964) Theoretical significance of dendritic trees for neuronal input-output relations In: Reiss RF, ed. Neural Theory and Modeling. Stanford University Press, Stanford, CA. pp. 73-97.Google Scholar
  25. Rall W (1969) Time constants and electrotonic length of membrane cylinders and neurons. Biophys. J. 9:1483-1508.Google Scholar
  26. Rall W (1977) Core conductor theory and cable properties of neurons. In: Kandel ER, ed. The Nervous System. Vol. I. Cellular Biology of Neurons, Part I. American Physiological Society, Washington, DC. pp. 39-97.Google Scholar
  27. Rall W, Burke RE, Holmes WR, Jack JJB, Redman SJ, Segev I (1992) Matching dendritic neuron models to experimental data. Physiol. Rev. 72:S159-S186.Google Scholar
  28. Rall W, Rinzel J (1973) Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys. J. 13:648-688.Google Scholar
  29. Rinzel J, Rall W (1974) Transient response in a dendritic neuronal model for current injected at one branch. Biophys. J. 14:759-790.Google Scholar
  30. Segev I (1992) Single neurone models: Oversimple, complex and reduced. Trends Neurosci. 15:414-421.Google Scholar
  31. Segev I, Burke RE, Hines M (1998) Compartmental models of complex neurons. In: Koch C, Segev I, eds. Methhods in Neuronal Modeling. MIT Press, Cambridge, MA. pp. 93-136.Google Scholar
  32. Segev I, Fleshman JW, Burke RE (1990) Computer simulation of group Ia EPSPs using morphologically realistic models of cat Æ-motoneurons. J. Neurophysiol. 64:648-660.Google Scholar
  33. Segev I, Rinzel J, Shepherd GM, eds. (1995) The Theoretical Foundation of Dendritic Function. MIT Press, Cambridge, MA.Google Scholar
  34. Spruston N, Johnston D (1992) Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. J. Neurophysiol. 67:508-529.Google Scholar
  35. Staley KJ, Otis TS, Mody I (1992) Membrane properties of dentate gyrus granule cells: Comparison of sharp microelectrode and whole-cell recordings. J. Neurophysiol. 67:1346-1358.Google Scholar
  36. Stratford K, Mason A, Larkman A, Major G, Jack JJB (1989) The modelling of pyramidal neurones in the visual cortex. In: Durbin R, Miall C, Mitchison G, eds. The Computing Neuron. Addison-Wesley, Workingham. pp. 296-321.Google Scholar
  37. White JA, Manis PB, Young ED (1992) The parameter identification problem for the somatic shunt model. Biol. Cyber. 66:307-318.Google Scholar
  38. Whitehead RR, Rosenberg JR (1993) On trees as equivalent cables. Proc. R. Soc. Lond. [Biol] 252:103-108.Google Scholar
  39. Zador AM, Agmon-Snir H, Segev I (1995) The morphoelectrotonic transform: Agraphical approach to dendritic function. J. Neurosci. 15:1669-1682.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • R.E. Burke
    • 1
  1. 1.Laboratory of Neural Control, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesda

Personalised recommendations