Journal of Computational Neuroscience

, Volume 10, Issue 1, pp 99–120 | Cite as

Osmotic Forces and Gap Junctions in Spreading Depression: A Computational Model

  • Bruce E. Shapiro


In a computational model of spreading depression (SD), ionic movement through a neuronal syncytium of cells connected by gap junctions is described electrodiffusively. Simulations predict that SD will not occur unless cells are allowed to expand in response to osmotic pressure gradients and K+ is allowed to move through gap junctions. SD waves of [K+]out ≈ 25 to ≈60 mM moving at ≈2 to ≈18 mm/min are predicted over the range of parametric values reported in gray matter, with extracellular space decreasing up to ≈50%. Predicted waveform shape is qualitatively similar to laboratory reports. The delayed-rectifier, NMDA, BK, and Na+ currents are predicted to facilitate SD, while SK and A-type K+ currents and glial activity impede SD. These predictions are consonant with recent findings that gap junction poisons block SD and support the theories that cytosolic diffusion via gap junctions and osmotic forces are important mechanisms underlying SD.

spreading depression neuronal volume osmosis gap junctions potassium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitken PG, Borgdorff AJ, Juta AJA, Kiehart DP, Somjen GG, Wadman WJ (1998a) Volume changes induced by osmotic stress in freshly isolated rat hippocampal neurons. Pflugers Arch. 436:991-998.Google Scholar
  2. Aitken PG, Tombaugh GC, Turner DA, Somjen GG (1998b) Similar propagation of SD and hypoxic SD-like depolarization in rat hippocampus recorded optically and electrically. J. Neurophysiol. 80:1514-1521.Google Scholar
  3. Ashton D, Willems R, Wynants J, Van Reempts J, Marrannes R, Clincke G (1997) Altered Na(+)-channel function as an in vitro model of the ischemic penumbra: Action of lubeluzole and other neuroprotective drugs. Brain Res. 745:210-221.Google Scholar
  4. Atri, A (1996) Mathematical modeling and analysis of intracellular calcium dynamics: Oscillations and wave propagation. PhD diss., University of California, Los Angeles.Google Scholar
  5. Atri A, Admundson J, Clapham D, Sneyd J (1993) A single-pool model for intracellular calcium oscillations andwaves in the xenopus laevis oocyte. Biophys. J. 65:1727-1739.Google Scholar
  6. Avoli M, Nagao T, Kohling R, Lucke A, Mattia D (1996) Synchronization of rat hippocampal neurons in the absence of excitatory amino acid-mediated transmission. Brain Res. 735:188-196.Google Scholar
  7. Basarsky TA, Duffy SN, Andrew RD, MacVicar BA (1998) Imaging spreading depression and associated intracellular calcium waves in brain slices. J. Neurosci. 18:7189-7199.Google Scholar
  8. Bayer VE, Pickel VM (1990) Ultrastructural localization of tyrosine hydroxylase in the rat ventral tegmental area: Relationship between immunolabeling density and neuronal associations. J. Neurosci. 10:2996-3013.Google Scholar
  9. Belluardo N, Trovato-Salinaro A, Mudò G, Hurd YL, Condorelli DF (1999) Structure, chromosomal localization, and brain expression of human C x 36 gene. J. Neurosci. Res. 57:740-752.Google Scholar
  10. Berridge MJ (1993) Inositol trisphosphate and calcium signaling. Nature 361:315-325.Google Scholar
  11. Blatz AL, Magleby KL (1987) Calcium-activated potassium channels. Trends Neurosci. 10:463-467.Google Scholar
  12. Bozhilova-Pastirova A, Ovtscharoff W (1995) Structure of the synaptic junctions in the rat sensorimotor cortex: Freeze-etching study of neuronal gap junctions. Neurosci. Lett. 201:265-267.Google Scholar
  13. Bures J, Buresova O, Krivanek J (1974) The Mechanism and Applications of Leao's Spreading Depression of Electroencephalographic Activity. Academic Press, New York.Google Scholar
  14. Burton FL, Hunter OF (1990) Sensitivity to flow of intrinsic gating in inwardly rectifying potassium channel from mammalian skeletal muscle. J. Physiol. (Lond.) 424:253-261.Google Scholar
  15. Christie BR, Eliot LS, Ito K, Miyakawa H, Johnston D (1995) Different Ca++ channels in soma and dendrites of hippocampal pyramidal neurons mediate spike-induced Ca++ influx. J. Neurophysiol. 73:2553-2557.Google Scholar
  16. Colbert CM, Johnston D (1996) Axonal action-potential initiation and the Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. J. Neurosci. 16:6676-6686.Google Scholar
  17. De Schutter E, Bower J (1994) An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. J. Neurophysiol. 71:375-400.Google Scholar
  18. De Schutter E, Smolen P (1998) Calcium dynamics in large neuronal network. In: Koch C, Segev I, eds. Methods in Neuronal Modeling: From Ions to Networks. MIT Press, Cambridge, MA. pp. 211-250.Google Scholar
  19. Destexhe A, Mainen ZF, Sejnowski, TJ (1998) Kinetic models of synaptic transmission. In: C Koch, I Segev, eds. Methods in Neuronal Modeling: From Ions to Networks. MIT Press, Cambridge, MA. pp. 1-26.Google Scholar
  20. Di Francesco D, Nobel D (1985) A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Trans. Roy. Soc. Lond. B307:353-398.Google Scholar
  21. Di Polo R, Beaugé L (1979) Physiological role of ATP-driven calcium pump in squid axon. Nature 278:271-273.Google Scholar
  22. Douglas R, Martin K (1998) Neocortex. In: Shepherd GM, ed. The Synaptic Organization of the Brain (4th ed.). Oxford University Press, New York.Google Scholar
  23. Fan J, Walsh KB (1999) Mechanical stimulation regulates voltage-gated potassium currents in cardiac microvascular endothelial cells. Circ. Res. 84:451-457.Google Scholar
  24. Farley J, Rudy B (1988) Multiple types of voltage-dependent Ca2+-activated K+ channels of large conductance in rat brain synaptosomal membranes. Biophys. J. 53:919-934.Google Scholar
  25. Felix JA, Woodruff ML, Dirksen ER (1996) Stretch increases inositol 1,4,5trisphosphate concentration in airway epithelial cells. Am. J. Respir. Cell. Mol. Biol. 14:296-301.Google Scholar
  26. Fró es MM, Correia AH, Garcia-Abreu J, Spray DC, Campos de Carvalho AC, Neto MV (1999) Gap-junctional coupling between neurons and astrocytes in primary central nervous system cultures. Proc. Natl. Acad. Sci. USA 96:7541-7546.Google Scholar
  27. Garaschuk O, Schneggenburger R, Schirra C, Tempia F, Konnerth A (1996) Fractional Ca2+ currents through somatic and dendritic glutamate receptor channels of rat hippocampal CA1 pyramidal neurons. J. Physiol. 491:757-772.Google Scholar
  28. Gardner-Medwin AR (1981) Possible roles of vertebrate neuroglia in potassium dynamics, spreading depression and migraine. J. Exp. Biol. 95:111-127.Google Scholar
  29. Gillessen T, Alzheimer C (1997) Amplification of EPSPs by low Ni2+-and amiloride-sensitive Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J. Neurophysiol. 77:1639-1643.Google Scholar
  30. Gruol DL, Jacquin T, Yool L (1991) Single channel KC currents recorded from the somatic and dendritic regions of cerebellar Purkinje neurons in culture. J. Neurosci. 11:1002-1015.Google Scholar
  31. Hablitz JJ, Heinemann U (1989) Alterations in the microenvironment during spreading depression associated with epileptiform activity in the immature neocortex. Brain Res. Dev. Brain Res. 46:243-252.Google Scholar
  32. Hernandez-Caceres J, Macias-Gonzalez R, Brozek G, Bures J (1987) Systemic ketamine blocks cortical spreading depression but does not delay the onset of terminal anoxic depolarization in rats. Brain Res. 437:360-364.Google Scholar
  33. Herreras O, Largo C, Ibarz JM, Somjen GG, Martin del Rio R (1994) Role of neuronal synchronizing mechanisms in the propagation of spreading depression in the in vivo hippocampus. J. Neurosci. 14:7087-7098.Google Scholar
  34. Herreras O, Somjen GG (1993) Propagation of spreading depression among dendrites and somata of the same cell population. Brain Res. 610:276-282.Google Scholar
  35. Hille B (1992) Ionic Channels of Excitable Membranes (2nd ed.). Sinauer, Sunderland, MA.Google Scholar
  36. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117:500-544.Google Scholar
  37. Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387:869-875.Google Scholar
  38. Holmes WR (1995) Modeling the effect of glutamate diffusion and uptake on NMDA and non-NMDA receptor saturation. Biophys. J. 69:734-747.Google Scholar
  39. Jakobson E (1980) Interactions of cell volume, membrane potential, and membrane transport parameters. Am. J. Physiol. 238:C196-C206.Google Scholar
  40. Ji S, John SA, Lu Y, Weiss JN (1998) Mechanosensitivity of the cardiac muscarinic potassium channel:Anovel property conferred by the Kir3.4 subunit. J. Biol. Chem. 273:1324-1328.Google Scholar
  41. Jing J, Aitken PG, Somjen GG (1994) Interstitial volume changes during spreading depression in rat hippocampal slices. Brain Res. 604:251-259.Google Scholar
  42. Kandler K, Katz LC (1995) Relationship between dye coupling and spontaneous activity in developing ferret visual cortex. Dev. Neurosci. 20:59-64.Google Scholar
  43. Kavalali ET, Zhuo M, Bito H, Tsien RW (1997) Dendritic Ca2+ channels characterized by recordings from isolated hippocampal dendritic segments. Neuron 18:651-663.Google Scholar
  44. Keener J, Sneyd J (1998) Mathematical Physiology. Springer-Verlag, New York.Google Scholar
  45. Koch C (1998) Biophysics of Computation. Oxford University Press, New York.Google Scholar
  46. Koroleva VI, Vinogradova LV, Bures J (1993) Reduced incidence of cortical spreading depression in the course of pentylenetetrazol kindling in rats. Brain Res. 608:107-114.Google Scholar
  47. Kostyuk PG, Verchratsky (1995) Calcium Signaling in the Nervous System. Wiley, Chichester.Google Scholar
  48. Kraig RP, Nicholson C (1978) Extracellular ionic variations during spreading depression. Neuroscience 3:1045-1059.Google Scholar
  49. Lal R, Arnsdorf MF (1992) Voltage dependent gating and single channel conductance of adult mammalian atrial gap junctions. Circ. Res. 71:737-743.Google Scholar
  50. Largo C, Cuevas P, Somjen G, Martin del Rio R, Herreras O (1996) The effect of depressing glial function in rat brain in situ on ion homeostasis, synaptic transmission, and neuron survival. J. Neurosci. 16:1219-1229.Google Scholar
  51. Largo C, Ibarz JM, Herreras O (1997a) Effects of the gliotoxin fluorocitrate on spreading depression and glial membrane potential in rat brain in situ. J. Neurophysiol. 78:295-307.Google Scholar
  52. Largo C, Tombaugh GC, Aitken PG, Herreras O, Somjen GG (1997b) Heptanol but not fluoroacetate prevents the propagation of spreading depression in rat hippocampal slices. J. Neurophysiol. 77:9-16.Google Scholar
  53. Lauritzen M, Hansen AJ (1992) The effect of glutamate receptor blockade on anoxic depolarization and cortical spreading depression. J. Cereb. Blood Flow Metab. 12:223-229.Google Scholar
  54. Lauritzen M, Rice ME, Okada Y, Nicholson C (1988) Quisqualate, kainate and NMDA can initiate spreading depression in the turtle cerebellum. Brain Res. 475:317-327.Google Scholar
  55. Leão AAP (1944a) Pial circulation and spreading depression of activity in cerebral cortex. J. Neurophysiol. 7:391-396.Google Scholar
  56. Leã o AAP (1944b) Spreading depression of activity in the cerebral cortex. Ph.D. diss., Harvard University.Google Scholar
  57. Leão AAP (1944c) Spreading depression of activity in the cerebral cortex. J. Neurophysiol. 7:359-390.Google Scholar
  58. Lemieux DR, Roberge FA, Joly D (1992) Modeling the dynamic features of the electrogenic Na, K pump of cardiac cell. J. Theor. Biol. 154:335-358.Google Scholar
  59. Magee JC, Johnston D (1995a) Characterization of single voltage-gated Na+ and Ca++ channels in apical dendrites of rat CA1 pyramidal neurons. J. Physiol. (Lond.) 487:67-90.Google Scholar
  60. Magee JC, Johnston D (1995b) Synaptic activation of voltage-gated channels in dendrites of hippocampal pyramidal neurons. Science 268:301-304.Google Scholar
  61. Mainen ZF, Sejnowski TJ (1998) Modeling active dendritic processes in pyramidal neurons. In: Koch C, Segev I, eds. Methods in Neuronal Modeling: From Ions to Networks. MIT Press, Cambridge, MA. pp. 171-210.Google Scholar
  62. Marrannes R, Willems R, De Prins E, Wauquier A (1998) Evidence for a role of the N-methyl-D-aspartate(NMDA) receptor in cortical spreading depression in the rat. Brain Res. 457:226-240.Google Scholar
  63. Martins-Ferreira H, Ribeiro LJ (1995) Biphasic effects of gap junctional uncoupling agents on the propagation of retinal spreading depression. Braz. J. Med. Biol. Res. 28:991-994.Google Scholar
  64. Mayer ML, Westbrook GL (1987) Permeation and block of n-methyl-d-aspartic acid receptor channels by divalent cations in mouse cultured central neurons. J. Physiol. 394:501-527.Google Scholar
  65. McCown TJ, Breese GR (1990) Effects of apamin and nicotinic acetylcholine receptor antagonists on inferior collicular seizures. Eur. J. Pharmacol. 187:49-58.Google Scholar
  66. McLachlan RS (1992) Suppression of spreading depression of Leao in neocortex by an N-methyl-D-aspartate receptor antagonist. Can. J. Neurol. Sci. 19:487-491.Google Scholar
  67. Mienville JM, Barker JL, Lange GD (1996) Mechanosensitive properties of BK channels from embryonic rat neuroepithelium. J. Membrane Biol. 153:211-216.Google Scholar
  68. Morton KW, Mayers KF (1994) Numerical Solution of Partial Differential Equations: An Introduction. Cambridge University Press, Cambridge.Google Scholar
  69. Müller M, Somjen GG (1998) Inhibition of major cationic inward currents prevents spreading depression-like hypoxic depolarization in rat hippocampal tissue slices. Brain Res. 812:1-13.Google Scholar
  70. Nadarajah B, Parnavelas JG (1999) Gap junction-mediated communication in the developing and adult cerebral cortex. Novartis Found. Symp. 219:157-174.Google Scholar
  71. Nedergaard M, Cooper AJ, Goldman SA (1995) Gap junctions are required for the propagation of spreading depression. J. Neurobiol. 28:433-444.Google Scholar
  72. Nellgard B, Wieloch T (1992) NMDA-receptor blockers but not NBQX, an AMPA-receptor antagonist, inhibit spreading depression in the rat brain. Acta Physiol. Scand. 146:497-503.Google Scholar
  73. Nicholson S, Syková E (1998) Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 21:207-215.Google Scholar
  74. Noma A, Tsuboi N (1987) Dependence of junctional conductance on proton, calcium and magnesium ions in cardiac paired cells of guinea pig. J. Physiol. 382:193-211.Google Scholar
  75. Peinado A, Yuste R, Katz LC (1993) Gap junctional communication and the development of local circuits in neocortex. Cereb. Cortex 3:488-498.Google Scholar
  76. Pleumsamran A, Kim D (1995) Membrane stretch augments the cardiac muscarinic K+ channel activity. J. Membr. Biol. 148:287-297.Google Scholar
  77. Psarropoulou C, Avoli M (1993) 4-Aminopyridine-induced spreading depression episodes in immature hippocampus: Developmental and pharmacological characteristics. Neuroscience 55:57-68.Google Scholar
  78. Qian N, Sejnowski TJ (1989) An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites, spines and axons. Biol. Cybern. 62:1-15.Google Scholar
  79. Reggia JA, Montgomery D (1996) A computational model of visual hallucinations in migraine. Comput. Biol. Med. 26:133-141.Google Scholar
  80. Reinhart PH, Chung S, Levitan IB (1989) A family of calcium-dependent potassium channels from rat brain. Neuron 2:1031-1041.Google Scholar
  81. Revett K, Ruppin E, Goodall S, Reggia JA (1998) Spreading depression in focal ischemia: A computational study. J. Cereb. Blood Flow Metab. 18:998-1007.Google Scholar
  82. Rörig B, Klausa G, Sutor B (1995) Dye coupling between pyramidal neurons in developing rat prefrontal and frontal cortex is reduced by protein kinase A activation and dopamine. J. Neurosci. 15:386-400.Google Scholar
  83. Rusakov DA, Kullmann DM (1998) Geometric and viscous components of the tortuosity of the extracellular space in the brain. Proc. Natl. Acad. Sci. USA 95:8975-8980.Google Scholar
  84. Sah P (1996) Ca2+-activated K+ currents in neurones: Types, physiological roles and modulation. TINS 19:150-154.Google Scholar
  85. Sasaki N, Mitsuiye T, Noma A (1992) Effects of mechanical stretch on membrane currents of single ventricular myocytes of guinea pig hearts. Jap. J. of Physiol. 42:957-970.Google Scholar
  86. Scheller D, Tegtmeier F, Schlue WR (1998) Dose-dependent effects of tetraethylammonium on circling spreading depressions in chicken retina. J. Neurosci. Res. 51:85-89.Google Scholar
  87. Schneggenburger R (1996) Simultaneous measurement of Ca++ in-flux and reversal potentials in recombinant n-methyl-d-aspartate receptor channels. Biophys. J. 70:2165-2174.Google Scholar
  88. Shapiro BE (2000) An electrophysiological model of gap-junction mediated cortical spreading depression including osmotic volume changes. Ph.D. diss., University of California, Los Angeles.Google Scholar
  89. Simbürger E, Stang A, Kremer M, Dermietzel R (1997) Expression of connexin43 mRNA in adult rodent brain. Histochem. Cell. Biol. 107:127-137.Google Scholar
  90. Sloper JJ, Powell TP (1978) Gap junctions between dendrites and somata of neurons in the primate sensori-motor cortex. Proc. R. Soc. Lond. B. Biol. Sci. 203:39-47.Google Scholar
  91. Somjen GG, Aitken PG, Czeh GL, Herreras O, Jing J, Young JN (1992) Mechanism of spreading depression: A review of recent findings and a hypothesis. Can. J. Physiol. Pharmacol. 70:S248-S254.Google Scholar
  92. Stuart G, Sakmann, B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69-72.Google Scholar
  93. Tas, PWI, Massa PT, Koschel K (1986) Preliminary characterization of an Na+, K+, Cl-co-transport activity in cultured human astrocytes. Neurosci. Lett. 70:369-377.Google Scholar
  94. Tas PWI, Massa PT, Kress HG, Koschel K (1987) Characterization of a Na+, K+, Cl-contransport in primary cultures of rat astrocytes. Biochim. Biophys. Acta 903:411-416.Google Scholar
  95. Traub RD, Jefferys JGR, Miles R, Whittington M, Toth K (1994) A branching dendritic model of a rodent CA3 pyramidal neurone. J. Physiol. (Lond.) 481:79-95.Google Scholar
  96. Tuckwell HC (1980) Predictions and properties of a model of potassium and calcium ion movements during spreading depression. Intern. J. Neurosci. 10:145-164.Google Scholar
  97. Tuckwell HC (1981) Simplified reaction-diffusion equations for potassium and calcium ion concentrations during spreading cortical depression. Intern. J. Neurosci. 12:95-107.Google Scholar
  98. Tuckwell HC, Hermansen CL (1981) Ion and transmitter movements during spreading cortical depression. Intern. J. Neurosci. 12:109-135.Google Scholar
  99. Tuckwell HC, Miura RM (1978) A mathematical model for spreading depression. Biophys. J. 23:257-276.Google Scholar
  100. Tuttle R, Masuko S, Nakajima Y (1986) Freeze-fracture study of the large myelinated club ending synapse on the goldfish Mauthner cell: Special reference to the quantitative analysis of gap junctions. J. Comp. Neurol. 246:202-211.Google Scholar
  101. van der Want JJL, Gramsbergen A, Ijkema-Paassen J, de Weerd H, Liem RSB (1998) Dendro-dendritic connections between motoneurons in the rat spinal cord: An electron microscopic investigation. Brain Res. 779:342-345.Google Scholar
  102. Van Harreveld A (1984) The nature of the chick's magnesium-sensitive retinal spreading depression. J. Neurobiol. 15:333-343.Google Scholar
  103. Vergara C, Latorre R, Marrion NV, Adelman JP (1998) Calcium-activated potassium channels. Curr. Opin. Neurobiol. 8:321-329.Google Scholar
  104. Vogel R, Weingart R (1998) Mathematical model of vertebrate gap junctions derived from electrical measurements on homotypic and heterotypic channels. J. Physiol. 510:177-189.Google Scholar
  105. Yamada WM, Koch C, Adams PR (1998) Multiple channels and calcium dynamics. In: Koch C, Segev I, eds. Methods in Neuronal Modeling: From Ions to Networks. MIT Press, Cambridge, MA. pp. 137-170.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Bruce E. Shapiro
    • 1
  1. 1.Machine Learning Systems Group, Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadena

Personalised recommendations