World Journal of Microbiology and Biotechnology

, Volume 16, Issue 8–9, pp 799–803

Production of ligninolytic enzymes by Fusarium solani strains isolated from different substrata

  • Mario Carlos Nazareno Saparrat
  • María Jesús Martínez
  • Horacio Alfio Tournier
  • Marta Noemí Cabello
  • Angélica Margarita Arambarri
Article

Abstract

A comparative study on the extracellular ligninolytic enzymatic activity of five strains of Fusarium solani in a carbon-limited medium under shaking, revealed a differential production of these enzymes. Aryl alcohol oxidase (AAO) activity was observed only in the supernatant of strain CLPS no. 568 with levels higher than 57 mU ml−1. Free extracellular laccase activity was detected in strains CLPS nos. 493, 568 and 570, strain no. 568 being the one which showed the highest activity (over 8.6 mU ml−1). Free extracellular lignin peroxidase (LiP) activity was not detected in any isolate tested, whereas low levels of manganese-dependent peroxidase (MnP) and manganese-independent peroxidase (MIP) activities were detected in certain isolates used. The AAO activity of F. solani on primary α-alcohols such as veratryl alcohol, is reported for the first time; this enzyme activity is hydrogen-peroxide independent. This is also the first report for extracellular MnP and MIP activities of F. solani.

Aryl-alcohol oxidase extracellular enzymes Fusarium laccase lignin peroxidase manganese-dependent peroxidase manganese-independent peroxidase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alconada, M.T. & Martínez, M.J. 1994 Purification and characterization of an extracellular endo-1,4-β-xylanase from Fusarium oxysporum f.sp. melonis. FEMS Microbiology Letters 118, 305-310.Google Scholar
  2. Archibald, F.S. 1992 A new assay for lignin-type peroxidases employing the dye Azure-B. Applied and Environmental Microbiology 58, 3110-3116.Google Scholar
  3. Binz, T. & Canevascini, G. 1996 Differential production of extracellular laccase in the Dutch elm disease pathogens Ophiostoma ulmi and O. novo-ulmi. Mycological Research 100, 1060-1064.Google Scholar
  4. Bollag, J.M. & Leonowicz, A. 1984 Comparative studies of extracellular fungal laccases. Applied and Environmental Microbiology 48, 849-854.Google Scholar
  5. Cooper, R.M. 1984 The role of cell wall degrading enzymes in infection and damage. In Plant Diseases: Infection, Damage and Loss, eds. Wood, R.K.S. & Jellis, G.J., pp. 13-20. Oxford: Blackwell Scientific Publications. ISBN 0-63201126-2.Google Scholar
  6. Deshpande, M.S., Vinay, B.R. & Lynch, J.M. 1992 Aureobasidium pullulans in applied microbiology: A status report. Enzyme and Microbial Technology 14, 514-527.CrossRefGoogle Scholar
  7. Domsch, K.H., Gams, W. & Anderson, T.H. 1993 Compendium of Soil Fungi, vol. I. pp. 859. Berlin: IHW-Verlag. ISBN: 3-9803083-8-3.Google Scholar
  8. Drews, W. & Kadam, L. 1978 Lignin metabolism by Aspergillus fumigatus and white-rot fungi. Developments in Industrial Microbiology 20, 153-161.Google Scholar
  9. Faison, B.D. & Kirk, T.K. 1985 Factors involved in the regulation of a ligninase activity in Phanerochaete chrysosporium. Applied and Environmental Microbiology 49, 299-304.Google Scholar
  10. Ferraz, A., Baeza, J. & Durán, N. 1991 Softwood biodegradation by an ascomycete Chrysonilia sitophila (TFB 27441-Strain). Letters in Applied Microbiology 13, 82-86.Google Scholar
  11. Field, J.A., de Jong, E., Feijoo-Costa, G. & de Bont, J.A.M. 1993 Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Trends in Biotechnology 11, 44-49.CrossRefGoogle Scholar
  12. Guillén, F., Martínez, A.T. & Martínez, M.J. 1992 Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. European Journal of Biochemistry 209, 603-611.CrossRefGoogle Scholar
  13. Hammer, E. & Schauer, F. 1997 Fungal hydroxylation of dibenzofuran. Mycological Research 101, 433-436.CrossRefGoogle Scholar
  14. Heinzkill, M. & Messner, K. 1997 The ligninolytic system of fungi. In Fungal Biotechnology, ed. Anke, T., pp. 213-227. Weinheim: Chapman & Hall. ISBN: 3-8261-0090-5.Google Scholar
  15. Higuchi, T. 1990 Lignin biochemistry. Biosynthesis and biodegradation. Wood Science and Technology 24, 23-63.CrossRefGoogle Scholar
  16. Hofrichter, M. & Fritsche, W. 1996 Depolymerization of low-rank coal by extracellular fungal enzyme systems. I. Screening for low-rank-coal-depolymerizing activities. Applied Microbiology and Biotechnology 46, 220-225.CrossRefGoogle Scholar
  17. Iwahara, S., Nishihira, T., Jomori, T., Kuwahara, M. & Higuchi, T. 1980 Enzymatic oxidation of α,β-unsaturated alcohols in the side chains of lignin-related aromatic compounds. Journal of Fermentation Technology 58, 183-188.Google Scholar
  18. Janshekar, H. & Fiechter, A. 1983 Lignin: biosynthesis, application, and biodegradation. In Advances in Biochemical Engineering and Biotechnology, eds. Fiechter, A. & Jeffries, T.W., pp. 119-178. Berlin: Springer-Verlag.Google Scholar
  19. Kirk, T.K. & Farrell, R.L. 1987 ``Enzymatic combustion'': The microbial degradation of lignin. Annual Review of Microbiology 41, 465-505.CrossRefGoogle Scholar
  20. Mönkemann, H., Hölker, U., Golubnitchaya-Labudová, O., Lichten-berg-Fratá, H. & Höfer, M. 1996 Molecular evidence of a lignin peroxidase H8 homologue in Fusarium oxysporum. Folia Microbiologica (Prague) 41, 445-448.Google Scholar
  21. Nazareth, S. & Mavinkurve, S. 1986 Degradation of ferulic acid via 4-vinylguaiacol by Fusarium solani (Mart.) Sacc. Canadian Journal of Microbiology 32, 494-497.CrossRefGoogle Scholar
  22. Norris, D.M. 1980 Degradation of 14C-labeled lignins and 14 C-labeled aromatic acids by Fusarium solani. Applied and Environmental Microbiology 40, 376-380.Google Scholar
  23. Ohta, M., Higuchi, T. & Shojiro, I. 1979 Microbial degradation of dehydrodiconiferyl alcohol, a lignin substructure model. Archives of Microbiology 121, 23-28.CrossRefGoogle Scholar
  24. Paszcynsky, A., Crawford, R.L. & Huynh, V.B. 1988 Manganese peroxidase of Phanerochaete chrysosporium: Purification. Methods in Enzymology 161, 264-270.Google Scholar
  25. Pal, A., Roy, A. & Das, A. 1980 Production of amylase by Polyporus ostreiformis. Mycologia 72, 1134-1140.Google Scholar
  26. Peláez, F., Martínez, M.J. & Martínez, A.T. 1995 Screening of 68 species of Basidiomycetes for enzymes involved in lignin degradation. Mycological Research 99, 37-42.CrossRefGoogle Scholar
  27. Regalado, V., Rodríguez, A., Perestelo, F., Carnicero, A., de la Fuente, G. & Falcón, M.A. 1997 Lignin degradation and modification by the soil-inhabiting fungus Fusarium proliferatum. Applied and Environmental Microbiology 63, 3716-3718.Google Scholar
  28. Rodríguez, A., Perestelo, F., Carnicero, A., Regalado, V., Pérez, R., de la Fuente, G. & Falcón, M.A. 1996 Degradation of natural lignins and lignocellulosic substrates by soil-inhabiting fungi imperfecti. FEMS Microbiology Ecology 21, 213-219.CrossRefGoogle Scholar
  29. Rogalski, J., Lundell, T., Leonowics, A. & Hatakka, A. 1991 Production of laccase, lignin peroxidase and manganese-dependent peroxidase by various strains of Trametes versicolor depending on culture conditions. Acta Microbiologica Polonica 40, 221-234.Google Scholar
  30. Schoemaker, H.E., Tuor, U., Muheim, A., Schmidt, H.W.H. & Leisola, M.S.A. 1991 White-rot degradation of lignin and xeno-biotics. In Biodegradation: Natural and Synthetic Materials, ed. Betts, W.B., pp. 157-174. Berlin: Springer-Verlag. ISBN: 3-540-19705-2.Google Scholar
  31. Somogyi, M. 1945 A new reagent for determination of sugars. Journal of Biological Chemistry 160, 61-73.Google Scholar
  32. Szklarz, G.D., Antibus, R.K., Sinsabaugh, R.L. & Linkins, A.E. 1989 Production of phenol oxidases and peroxidases by wood-rotting fungi. Mycologia 81, 234-240.Google Scholar
  33. Tien, M. & Kirk, T.K. 1988 Lignin peroxidase of Phanerochaete chrysosporium. Methods in Enzymology 161, 238-249.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Mario Carlos Nazareno Saparrat
    • 1
  • María Jesús Martínez
    • 2
  • Horacio Alfio Tournier
    • 3
  • Marta Noemí Cabello
    • 1
  • Angélica Margarita Arambarri
    • 1
  1. 1.Instituto de Botánica Spegazzini, Facultad de Ciencias Naturales y MuseoUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Unidad de Microbiología Aplicada, Centro de Investigaciones BiológicasConsejo Superior de Investigaciones CientíficasMadridSpain
  3. 3.Cátedra de Farmacología, Facultad de Ciencias MédicasUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations