World Journal of Microbiology and Biotechnology

, Volume 16, Issue 8–9, pp 757–767 | Cite as

Cyanobacterial hydrogen production

  • Datta Madamwar
  • Nikki Garg
  • Vishal Shah


With the global attention and research now being focussed on looking for an alternative to fossil fuel, hydrogen is the hope of future. Cyanobacteria are highly promising microorganisms for biological photohydrogen production. The review highlights the advancement in the biology of cyanobacterial hydrogen production in recent years. It discusses the enzymes involved in hydrogen production, viz. hydrogenases and nitrogenases, various strategies developed by cyanobacteria to limit nitrogenase inactivation by atmospheric and photosynthetic O2, different biochemical and physicochemical parameters influencing the commercial cyanobacterial hydrogen production and the methods opted by different researchers for eliminating them to obtain maximum and sustained hydrogen production. Integrating the existing knowledge, techniques and expertise available, much future improvement and progress can be made in the field.

Cyanobacteria hydrogen hydrogenase nitrogenase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adhikary, S.P. 1998 Polysaccharides from mucilaginous envelope layers of cyanobacteria and their ecological significance. Journal of Scientific & Industrial Research 57, 454-466.Google Scholar
  2. Ali, I. & Basit, M.A. 1993 Significance of hydrogen content in fuel combustion. International Journal of Hydrogen Energy 18, 1009-1011.Google Scholar
  3. Appel, J. & Schulz, R. 1996 Sequence analysis of an operon of a NAD(P)-reducing nickel hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803 gives additional evidence for direct coupling of the enzyme to NAD(P)H-dehydrogenase (complex I). Biochimica et Biophysica Acta 1298, 141-147.Google Scholar
  4. Appel, J. & Schulz, R. 1998 Hydrogen metabolism in organisms with oxygenic photosynthesis: Hydrogenases as important regulatory devices for a proper redox poising? Journal of Photochemistry and Photobiology B: Biology 47, 1-11.Google Scholar
  5. Appel, J., Phunpruch, S., Steinmuller, K. & Schulz, R. 2000 The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis. Archives of Microbiology 173, 333-338.Google Scholar
  6. Apte, S.K. 1996 Inter-relationship between photosynthesis and nitrogen fixation in cyanobacteria. Journal of Scientific & Industrial Research 55, 583-595.Google Scholar
  7. Apte, S.K. & Bhagwat, A.A. 1989 Salinity-stress-induced proteins in two nitrogen fixing Anabena strains differentially tolerant to salt. Journal of Bacteriology 171, 909-915.Google Scholar
  8. Axelsson, R., Oxelfelt, F. & Lindblad, P. 1999 Transcriptional regulation of Nostoc uptake hydrogenase. FEMS Microbiology Letters 170, 77-81.Google Scholar
  9. Babcock, G.T. & Wikstrom, M. 1992 Oxygen activation and the conservation of energy in cell respiration. Nature, London 356, 301-309.Google Scholar
  10. Bagai, R. & Madamwar, D. 1998 Prolonged evolution of photo-hydrogen by intermittent supply of nitrogen using a combined system of Phormidium valderianum, Halobacterium halobium, and Escherichia coli. International Journal of Hydrogen Energy 23, 545-550.Google Scholar
  11. Bagai, R. & Madamwar, D. 1999 Long-term photo-evolution of hydrogen in a packed bed reactor containing a combination of Phormidium valderianum, Halobacterium halobium, and Escherichia coli immobilized in polyvinyl alcohol. International Journal of Hydrogen Energy 24, 311-317.Google Scholar
  12. Bagchi, S.N., Ernst, A. & Boger, P. 1991 The effect of activated oxygen species of nitrogenase of Anabaena variabilis. Zeitschrift för. Naturforschung 46, 407-415.Google Scholar
  13. Barak, R., Nur, I., Okun, Y. & Henis, Y. 1982 Aerotactic response of Azospirillum brasilense. Journal of Bacteriology 152, 643-649.Google Scholar
  14. Ben Amotz, A., Erbes, D.L. & Riederer-Henderson, M. 1975 Hydrogen metabolism in photosynthetic organisms. Dark H2 evolution and uptake by algae and mosses. Plant Physiology 56, 72.Google Scholar
  15. Benemann, J.R. 1994 Feasibility analysis of photobiological hydrogen production. In Hydrogen Energy Progress X. Proceeding of 10th World Hydrogen Energy Conference, Miami, Cocoa Beach, Florida, eds. Block, D.L. Veziroglu, T.N. pp. 931-940.Google Scholar
  16. Benemann, J.R. 1997 Feasibility analysis of photobiological hydrogen production. International Journal of Hydrogen Energy 22, 979-988.Google Scholar
  17. Blier, R., Laliberte, G. & Noue, J.D. 1995 Tertiary treatment of cheese factory anaerobic e.uent with Phormidium bohneri and Micractinium pusillum. Bioresource Technology 52, 151-155.Google Scholar
  18. Block, D.L. & Melody, I. 1992 Efficiency and cost goals for photoenhanced hydrogen production processes. International Journal of Hydrogen Energy 17, 853-861.Google Scholar
  19. Boison, G., Schmitz, O., Mikheeva, L., Shestakov, S. & Bothe, H. 1996 Cloning, molecular analysis and insertional mutagenesis of the bidirectional hydrogenase genes from the cyanobacterium Anacystis nidulans. FEBS Letters 394, 153-159.Google Scholar
  20. Bone, D.H. 1971 Kinetics of synthesis of nitrogenase in batch and continuous culture of Anabena flos-aquae. Archiv fur Mikrobiologie 80, 242-251.Google Scholar
  21. Brass, S., Ernst, A. & Boger, P. 1992 Induction and modification of dinitrogenase reductase in the unicellular cyanobacterium Synechocystis BO 8402. Archives of Microbiology 158, 422-428.Google Scholar
  22. Burris, R.H. 1979 Inhibition. In A Treatise on Dinitrogen Fixation, ed. Hardy, R.W.F. John Willey & Sons, pp. 569-603. ISBN 0-47135134-2.Google Scholar
  23. Chen, P.C. 1986 Alteration of nitrogenase activity of Anabena CH1 and CH2 during light-dark transition. Chinese Journal of Microbiology and Immunology 19, 36-41.Google Scholar
  24. Christiansen, J., Cash, V.L., Seefeldt, L.C. & Dean, D.R. 2000 Isolation and characterization of an acetylene-resistant nitrogenase. Journal of Biological Chemistry 275, 11459-11464.Google Scholar
  25. Dainty, A.L., Goulding, K.H. Robinson, P.K., Simpkins, I. & Trevan, D. 1986 Stability of alginate immobilized algal cells. Biotechnology and Bioengineering 28, 210-216.Google Scholar
  26. Dancher, N.A. 1988 Rhodopsin like membrane proteins in the Archaebacterium: Halobacterium halobium. A clue to cellular evolution. ISE Letters, Endocytosis. and Cellular Research 5, 1-16.Google Scholar
  27. Dawar, S., Mohanty, P. & Behera, B.K. 1999 Sustainable hydrogen production in the cyanobacterium Nostoc sp. ARM 411 grown in fructose-and magnesium sulphate-enriched culture. World Journal of Microbiology & Biotechnology 15, 289-292.Google Scholar
  28. Egan, B.Z. & Scott, C.D. 1978 Use of cell-free biological systems for hydrogen production. Biotechnology & Bioengineering Symposium 8, 489-500.Google Scholar
  29. Eisbrenner, G., Distler, E., Floener, L. & Bothe, H. 1978 The occurence of hydrogenase in some blue-green algae. Archives of Microbiology 118, 177-184.Google Scholar
  30. Ernst, A., Kerfin, W., Spiller, H. & Boger, P. 1979 External factors influencing light-induced H2 evolution by the blue-green algae, Nostoc muscorum. Zeitschrift fur Naturforschung 34, 820-825.Google Scholar
  31. Fay, P. 1992 Oxygen relations of nitrogen fixation in cyanobacteria. Microbiological Reviews 56, 340-373.Google Scholar
  32. Ferris, F.G., Thompson, J.B. & Beveridge, T.J. 1997 Modern freshwater microbialites from Kelly lake, British Columbia, Canada. Society for Sedimentary Geology 12, 213-219.Google Scholar
  33. Fredriksson, C. & Bergmann, B. 1995 Nitrogenase quantity varies diurnally in a subset of cells within colonies of the nonheterocystous cyanobacterium Trichodesmium sp. Microbiology 141, 2471-2478.CrossRefGoogle Scholar
  34. Fresnedo, O., Gomez, R. & Serra J.L. 1991 Carotenoid composition in the cyanobacterium Phormidium laminosum. Effect of nitrogen starvation. FEBS Letters 282, 300-304.Google Scholar
  35. Gallon, J.R. 1992 Reconciling the incompatible: N2 fixation and O2. New Phytologist 122, 571-609.CrossRefGoogle Scholar
  36. Gallon, J.R. & Hamadi, A.F. 1984 Studies on the e.ects of oxygen on acetylene reduction (nitrogen fixation) in Gloeothece sp. ATCC 27152. Journal of General Microbiology 130, 495-503.Google Scholar
  37. Grilli, C.M., Canini, A., Galiazzo, F. & Rotilio, G. 1991 Superoxide dismutase in vegetative cells, heterocysts and akinites of Anabena cylindrica Lemm. FEMS Microbiology Letters 80, 161-166.Google Scholar
  38. Gupta, R.K. & Narasimharao, B.P. 1987 Hydrogen-a fuel from algae. Everyman's Science. April-May, 57-61.Google Scholar
  39. Hall, D.O., Markov, S.A., Watanabe, Y. & Rao, K.K. 1995 The potential application of cyanobacterial photosynthesis for clean technologies. Photosynthesis Research 46, 159-167.Google Scholar
  40. Hall, D.O., Rao, K.K., Gisby, P.E., Santos, C.P., Richoux, M.C. & Maharajh, W.L. 1981 Biphotolysis of water for hydrogen production. In Photosynthesis Proceedings of the Fifth International Congress vol. 6 Photosynthesis and Productivity, Photosynthesis and Environment, ed. George Akoyunoglou, Philadelphia: Balaban International Science Services. ISBN 0-86689006-8.Google Scholar
  41. Hallenbeck, P.C., Kochian, L.V., Weissmann, J.C. & Benemann, J.R. 1978 Solar energy conversion with Hydrogen producing cultures of the blue green alga, Anabaena cylindrica. Biotechnology and Bioengineering Symposium 8, 283-297.Google Scholar
  42. Happe, T., Schutz, K. & Bohme, H. 2000 Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabena variabilis ATCC 29413. Journal of Bacteriology 182, 1624-1631.Google Scholar
  43. Huang, T.C., Tu, J., Chow, T.J. & Chen T.S. 1990 Circadian rhythm of the prokaryote Synechococcus sp. RF-1. Plant Physiology 92, 531-533.CrossRefGoogle Scholar
  44. Kajii, Y., Kobayashi, M., Takahashi, T. & Onodera, K. 1994 A novel type of mutant of Azotobacter vinelandii that fixes Nitrogen in the presence of tungsten. Bioscience Biotechnology and Biochemistry 58, 1179-1180.CrossRefGoogle Scholar
  45. Kalia, V.C. 1995 Jaivic hydrogen utpadan: ek samiksha Bhartiya Vigyanic Evam Audhyogic Anusandhan Patrika 3, 15-21.Google Scholar
  46. Kentemich, T., Casper, M. & Bothe, H. 1991a The reversible hydrogenase in A. nidulans is a component of the cytoplasmic membrane. Naturwissenschaften 78, 559-560.Google Scholar
  47. Kentemich, T., Haverkamp, G. & Bothe, H. 1991b The expression of a third nitrogenase system in the cyanobacterium Anabena variabilis. Zeitschrift fur Naturforschung 46, 217-222.Google Scholar
  48. Kentemich, T., Dannenberg, G., Hundeshagen, B. & Bothe, H. 1988 Evidence for the occurring of the alternative vanadium-containing nitrogenase in the cyanobacterium Anabena variabilis. FEMS Microbiology Letters 51, 19-24.Google Scholar
  49. Kim, J. & Rees, D.C. 1994 Nitrogenase and biological nitrogen fixation. Biochemistry 33, 389-397.Google Scholar
  50. Kojima, E. & Yamaguchi, Y. 1988 Photoproduction of hydrogen by adapted cells of Chlorella pyrenoidosa. Journal of Fermentation Technology 66, 19-25.Google Scholar
  51. Kosaric, N. & Lyng, R.P. 1988 Microbial production of hydrogen. In Biotechnology, Vol 6b, eds. H.J. Rehm & G. Reed. pp. 101-136. Weinheim: VCH Verlagsgesellschaft.Google Scholar
  52. Krasna, A.I. 1979 Hydrogenase: Properties and applications. Enzyme and Microbial Technology 1, 165-172.Google Scholar
  53. Kuritz, T. 1999 Cyanobacteria as agents for the control of pollution by pesticides and chlorinated organic compounds. Journal of Applied Microbiology Symposium Supplement 85, 186S-192S.Google Scholar
  54. Lambert, G.R., Daday, A. & Smith, G.D. 1979 Hydrogen evolution from immobilized cultures of cyanobacterium Anabena cylindrica. FEBS Letters 101, 125-128.Google Scholar
  55. Lambert, G.R. & Smith, G.D. 1977 Hydrogen formation by marine Blue-green algae. FEBS Letters 83, 159-162.Google Scholar
  56. Lambert, G.R. & Smith, G.D. 1981 The hydrogen metabolism of cyanobacteria (Blue-green algae). Biological Reviews 56, 589-660.Google Scholar
  57. Lichtl, R.R., Bazin, M.J. & Hall, D.O. 1997 The biotechnology of hydrogen production by Nostoc flagelliforme grown under chemostat conditions. Applied Microbiology and Biotechnology 47, 701-707.Google Scholar
  58. Lindblad, P., Hansel, A., Oxelfelt, F., Tamagnini, P. & Troshina, O. 1998 Nostoc PCC 73102 and H2. Knowledge, research and biotechnological challenges. In Biohydrogen, ed. Zaborsky O.R. pp. 53-63. New York: Plenum Press.Google Scholar
  59. Luque, I., Florei, E. & Herrero, A. 1994 Molecular mechanism for the operation of nitrogen control in cyanobacteria. EMBO Journal 13, 2862-2869.Google Scholar
  60. Mackey, E.J. & Smith, G.D. 1983 Adaptation of the cyanobacterium Anabena cylindrica to high oxygen tensions. FEBS Letters 156, 108-112.Google Scholar
  61. Markov, S.A., Lichtl, R., Rao, K.K. & Hall, D.O. 1993 A hollow fibre photobioreactor for continuous production of hydrogen by immobilized cyanobacteria under partial vacuum. International Journal of Hydrogen Energy 15, 901-906.Google Scholar
  62. Matsunaga, T., Takeyama, H., Miura, Y., Yamazaki, T., Furuya & H., Sode, K. 1995 Screening of marine cyanobacteria for high palmitoleic acid production. FEMSMicrobiology Letters 133, 137-141.Google Scholar
  63. Mctavish, H., Sayavedra-Soto, L.A. & Arp, D.J. 1995 Substitution of Azotobacter vinelandii hydrogenase small subunit cysteines by serines can create insensitivity to inhibition by O2 and preferentially damages H2 oxidation over H2 evolution. Journal of Bacteriology 177, 3960-3964.Google Scholar
  64. Misra, H.S. & Tuli, R. 2000 Differential expression of photosynthesis and nitrogen fixing genes in the cyanobacterium Plectonema boryanum. Plant Physiology 123, 731-736.Google Scholar
  65. Mitsui, A., Kumazawa, S., Takahashi, A., Ikemoto, H., Cao, S. & Arai, T. 1986 Stratergy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature, London 323, 720-722.Google Scholar
  66. Mitsui, A., Matsunaga, T., Ikemoto, H. & Renuka, B.R. 1985 Organic and inorganic waste treatment and simultaneous photoproduction of hydrogen by immobilized photosynthetic bacteria. Developments in Industrial Microbiology 26, 209-222.Google Scholar
  67. Miyake, C., Michihata, F. & Asada, K. 1991 Scavenging of hydrogen peroxide in prokaryotic and eukaryotic algae: Acquisition of ascorbate peroxidase during evolution of cyanobacteria. Plant Cell Physiology 32, 33-43.Google Scholar
  68. Miyake, J., Mao, X.Y. & Kawamura, S. 1984 Photoproduction of Hydrogen from glucose by a co-culture of a photosynthetic bacterium and Clostridium butyricum. Journal of Fermentation Technology 62, 531-535.Google Scholar
  69. Miyamoto, K., Hallenback, P.C. & Benemann, J.R. 1979 Hydrogen production by the thermophilic alga Mastigocladus laminosus: Effects of nitrogen, temperature, and inhibition of photosynthesis. Applied and Environmental Microbiology 38, 440-446.Google Scholar
  70. Miyamoto, K., Nawa, Y., Matsuoka, S., Ohta, S. & Miura, Y. 1990 Mechanism of adaptation and H2 photoproduction in a marine green alga, Chlamydomonas sp. MGA 161. Journal of Fermentation and Bioengineering 70, 66-69.Google Scholar
  71. Murry, M.A., Horne, A.J. & Benemann, J.R. 1984 Physiological studies of oxygen protection mechanisms in the heterocysts of Anabena cylindrica. Applied and Environmental Microbiology 47, 449-454.Google Scholar
  72. Nagarkar, S. 1998 New records of marine cyanobacteria from rocky shores of Hong Kong. Botanica Marina 41, 527-542.CrossRefGoogle Scholar
  73. Neuer, G. & Bothe, H. 1985 Electron donation to nitrogenase in heterocysts of cyanobacteria. Archives of Microbiology 143, 185-191.Google Scholar
  74. Newton, R.P., Walton, T.J. & Moyse, C.D. 1977 Non-α-tocopherols in the unicellular blue-green alga Gleocapsa. Biochemical Society Transactions 5, 1486-1489.Google Scholar
  75. Ogden, J.M. & Williams, R.H. 1989 Needed: A low polluting alternative to fossil fuels. In Solar Hydrogen: Moving Beyond Fossil Fuels, pp. 5-16, World Resources Institute, ISBN 0-91582538-4.Google Scholar
  76. Ohta, Y. & Mitsui, A. 1981 Enhancement of hydrogen photoproduction by a marine Chromatium sp. Miami PBS 1071 grown in molecular nitrogen. In Advances in Biotechnology, vol II, eds. M. Moo-Young & C.W. Robinson. pp. 303-307, Pergamon Press. ISBN 0-08025365-2.Google Scholar
  77. Ohtaguchi, K., Kajiwara, S., Mustaqim, D. & Takahashi, N. 1997 Cyanobacterial bioconversion of carbon dioxide for fuel productions. Energy Conversation and Management 38, S523-S528.Google Scholar
  78. Oxelfelt, F., Tamagnini, P., Salema, R. & Lindblad, P. 1995 Hydrogen uptake in Nostoc strain PCC 73102: E.ects of nickel, hydrogen, carbon, and nitrogen. Plant Physiology and Biochemistry 33, 617-623.Google Scholar
  79. Paerl, H.W. & Carlton, R.G. 1988 Control of nitrogen fixation by oxygen depletion in surface associated microzones. Nature, London 332, 260-262.Google Scholar
  80. Paerl, H.W. & Prufert, L.E. 1987 Oxygen poor microzones as potential sites of microbial N2 fixation in nitrogen-depleted aerobic marine waters. Applied and Environmental Microbiology 53, 1078-1087.Google Scholar
  81. Paerl, H.W., Prufert, L.E. & Ambrose, W.W. 1991 Contemporaneous N2 fixation and oxygenic photosynthesis in the nonheterocystous mat-forming cyanobacterium Lyngbya aestuarii. Applied and Environmental Microbiology 57, 3086-3092.Google Scholar
  82. Patel, S. & Madamwar, D. 1994 Photohydrogen production from a coupled system of Halobacterium halobium and Phormidium valderianum. International Journal of Hydrogen Energy 19, 733-738.Google Scholar
  83. Patel, S. & Madamwar, D. 1995 Continous Hydrogen evolution by an immobilized combined system of Phormidium valderianum, Halobacterium halobium and Escherichia coli in a packed bed reactor. International Journal of Hydrogen Energy 20, 631-634.Google Scholar
  84. Peschek, G.A. 1979 Aerobic hydrogenase activiy in Anacystis nidulans. The oxyhydrogen reaction. Biochimica et Biophysica Acta 548, 203-215.Google Scholar
  85. Philippis, R.D., Margheri, M.C., Materassi, R. & Vincenzini, M. 1998 Potential of unicellular cyanobacteria from saline environments as exopolysaccharide producers. Applied and Environmental Microbiology 64, 1130-1132.Google Scholar
  86. Philips, E.J. & Mitsui, A. 1983 Role of light intensity and temperature in the regulation of hydrogen photoproduction by the marine cyanobacterium Oscillatoria sp. strain Miami BG-7. Applied and Environmental Microbiology 45, 1212-1220.Google Scholar
  87. Philips, E.J. & Mitsui, A. 1986 Characterization and optimization of hydrogen production by a salt water blue green algae Oscillatoria sp. strain Miami BG-7. II Use of immobilization for enhancement of hydrogen production. International Journal of Hydrogen Energy 11, 83-89.Google Scholar
  88. Rai, A.K. & Abraham, G. 1995 Relationship of combined nitrogen sources to salt tolerance in freshwater cyanobacterium Anabena doliolum. Journal of Applied Bacteriology 78, 501-506.Google Scholar
  89. Ramchandran, S. & Mitsui A. 1984 Recycling of hydrogen photoproduction system using an immobilized marine blue green algae Oscillatoria sp Miami BG 7, solar energy and seawater. In Abstracts of VII International Biotechnology Symposium. pp. 183-184.Google Scholar
  90. Rao, K.K. & Hall, D.O. 1996 Hydrogen production by cyanobacteria: Potential, problems and prospects. Journal of Marine Biotechnology 4, 10-15.Google Scholar
  91. Rawson, D.M. 1985 The effects of exogenous aminoacids on growth and nitrogenase activity in the cyanobacterium Anabena cylindrica PCC 7122. Journal of General Microbiology 134, 2549-2544.Google Scholar
  92. Reedy, K.J., Haskel, J.B., Sherman, D.M. & Sherman, L.A. 1993 Unicellular, aerobic nitrogen-fixing cyanobacteria of the genus Cyanothece. Journal of Bacteriology 175, 1284-1292.Google Scholar
  93. Reedy, P.M., Spiller, H., Albrecht, S.L. & Shanmugam, K.T. 1996 Photodissimilation of fructose to H2 and CO2 by a dinitrogen-fixing cyanobacterium Anabena variabilis. Applied and Environmental Microbiology 62, 1220-1226.Google Scholar
  94. Robson, R.L. & Postgate, J.R. 1980 Oxygen and hydrogen in biological nitrogen fixation. Annual Review of Microbiology 34, 183-207.Google Scholar
  95. Schlegel, H.G. & Schneider, K. 1985 Microbial metabolism of hydrogen. In Comprehensive Biotechnology: The Principles, Applications and Regulations of Biotechnology in Industry, Agriculture and Medicine. ed Murray Moo-young Vol. 1 pp. 439-457, Pergamon press. ISBN 0-08032509-2.Google Scholar
  96. Schmitz, O., Boison, G., Hilscher, R., Hundeshagen, B., Zimmer, W., Lottspeich, F. & Bothe, H. 1995 Molecular biological analysis of a bi-directional hydrogenase from cyanobacteria. European Journal of Biochemistry 233, 266-276.Google Scholar
  97. Schmitz, O. & Bothe, H. 1996 NAD(P)+-dependent hydrogenase activity in extracts from the cyanobacterium Anacystis nidulans. FEMS Microbiology Letters 135, 97-101.Google Scholar
  98. Schneegurt, M.A., Tucker, D.L., Ondr, J.K., Sherman, D.M. & Sherman, L.A. 2000 Metabolic rhythms of a diazotrophic cyanobacterium, Cyanothece sp. strain ATCC 51142, heterotrophically grown in continuous dark. Journal of Phycology 36, 107-117.Google Scholar
  99. Shah, V., Garg, N. & Madamwar, D. 1999 Exopolysaccharide production by a marine cyanobacterium Cyanothece sp. Application in dye removal by its gelation phenomenon. Applied Biochemistry and Biotechnology 82, 81-90.Google Scholar
  100. Shah, V., Garg, N. & Madamwar, D. 2000a Record of the cyanobacteria present in the Hamisar pond of Bhuj, India. Acta Botanica Malacitana 25, in press.Google Scholar
  101. Shah, V., Garg, N. & Madamwar, D. 2000b Characterization of the extracellular polysaccharide produced by a marine cyanobacterium cyanothece sp. and its exploitation toward metal removal from solutions. Current Microbiology 40, 274-278.Google Scholar
  102. Sode, K., Hatano, N. & Tatara, M. 1994 Psuedo-continuous culture of marine recombinant cyanobacteria under a light dark cycle. Biotechnology Letters 16, 973-976.Google Scholar
  103. Srivastava, R.C., Madamwar, D.B., Sharma, R.K., Tandon, A. & Bhise, S.B. 1984 A new observation on Halobacterium halobium: Light induced volume flow through the whole organism. Experientia 40, 773-775.Google Scholar
  104. Stal, L.J. & Krumbein, W.E. 1985 Oxygen protection of nitrogenase in the aerobically nitrogen fixing, non-heterocystous cyanobacterium Oscillatoria sp. Archives of Microbiology 143, 72-76.Google Scholar
  105. Stewart, W.D.P. 1973 Nitrogen fixation by photosynthetic microorganisms. Annual Review of Microbiology 27, 283-316.Google Scholar
  106. Stoeckenius, W., Lozier, R.H. & Bogomolni, R.A. 1979 Bacteriorhodopsin and the purple membrane of Halobacteria. Biochimica et Biophysica Acta 505, 215-278.Google Scholar
  107. Suda, S., Kumazawa, S. & Mitsui, A. 1992 Change in the H2 photoproduction capability in a synchronously grown aerobic nitrogen-fixing cyanobacteria, Synechococcus sp. Miami BG043511. Archives of Microbiology 158, 1-4.Google Scholar
  108. Tamagnini, P., Troshina, P., Oxelfelt, F., Salema, R. & Lindblad, P. 1997 Hydrogenase in Nostoc sp. strain PCC 73120, a strain lacking a bi-directional enzyme. Applied and Environmental Microbiology 63, 1801-1807.Google Scholar
  109. Thiel, T. 1994. Genetic analysis of cyanobacteria. In The Molecular Biology of Cyanobacteria, ed. Bryant DA. pp. 581-611, Dordrecht, The Netherlands: Kluwer Academic Publishers. ISBN 0-79233273-3.Google Scholar
  110. Travieso, L., Benitez, F., Weiland, P., Sanchez, E., Duperyon, R. & Dominguez, A.R. 1996 Experiments on immobilization of micro-algae for nutrient removal in wastewater treatments. Bioresource Technology 55, 181-186.Google Scholar
  111. Tsygankov, A.A., Hall, D.O., Liu, J.G. & Rao, K.K. 1998 An automated helical photobioreactor incorporating cyanobacteria for continuous hydrogen production. In Biohydrogen, ed. Zaborsky O. R. pp. 431-440, New York: Plenum Press. ISBN 0-30646057-2.Google Scholar
  112. Tsygankov, A.A., Serebryakova, L.T., Rao, K.K. & Hall, D.O. 1998 Acetylene reduction and hydrogen photoproduction by wild-type and mutant strains of Anabena at di.erent CO2 and O2 concentrations. FEMS Microbiology Letters 162, 13-17.Google Scholar
  113. Vos, P.D., Stevens, P. & Ley, J.D. 1983 Hydrogen gas production from formate and glucose by di.erent members of the Enterobacteriaceae. Biotechnology Letters 5, 69-74.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Datta Madamwar
    • 1
  • Nikki Garg
    • 1
  • Vishal Shah
    • 1
  1. 1.Postgraduate Department of BiosciencesSardar Patel UniversityGujaratIndia

Personalised recommendations