Autonomous Robots

, Volume 7, Issue 3, pp 211–224 | Cite as

A Robust Analog VLSI Motion Sensor Based on the Visual System of the Fly

  • Reid R. Harrison
  • Christof Koch
Article

Abstract

Sensing visual motion gives a creature valuable information about its interactions with the environment. Flies in particular use visual motion information to navigate through turbulent air, avoid obstacles, and land safely. Mobile robots are ideal candidates for using this sensory modality to enhance their performance, but so far have been limited by the computational expense of processing video. Also, the complex structure of natural visual scenes poses an algorithmic challenge for extracting useful information in a robust manner. We address both issues by creating a small, low-power visual sensor with integrated analog parallel processing to extract motion in real-time. Because our architecture is based on biological motion detectors, we gain the advantages of this highly evolved system: A design that robustly and continuously extracts relevant information from its visual environment. We show that this sensor is suitable for use in the real world, and demonstrate its ability to compensate for an imperfect motor system in the control of an autonomous robot. The sensor attenuates open-loop rotation by a factor of 31 with less than 1 mW power dissipation.

optomotor system analog VLSI optic flow motion detector insect vision 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelson, E.H. and Bergen, J.R. 1985. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am., A 2:284-299.Google Scholar
  2. Borst, A. 1990. How do flies land? BioScience, 40:292-299.Google Scholar
  3. Borst, A. and Egelhaaf, M. 1989. Principles of visual motion detection. Trends Neurosci., 12:297-306.Google Scholar
  4. Borst, A. and Egelhaaf, M. 1990. Direction selectivity of blowfly motion-sensitive neurons is computed in a two-stage process. Proc. Natl. Acad. Sci. USA, 87:9363-9367.Google Scholar
  5. Collett, T.S. 1980. Some operating rules for the optomotor system of a hoverfly during voluntary flight. J. Comp. Physiol., 138:271-282.Google Scholar
  6. Delbrück, T. 1993. Silicon retina with correlation-based, velocity-tuned pixels. IEEE Trans. Neural Networks, 4:529-541.Google Scholar
  7. Delbrück, T. and Mead, C.A. 1996. Analog VLSI phototransduction by continuous-time, adaptive, logarithmic photoreceptor circuits. CNS Memo 30, California Institute of Technology.Google Scholar
  8. Dong, D.W. and Atick, J.J. 1995. Statistics of natural time-varying images. Network, 6:345-358.Google Scholar
  9. Douglas, R., Mahowald, M., and Mead, C. 1995. Neuromorphic analogue VLSI. Ann. Rev. Neurosci., 18:255-281.Google Scholar
  10. Duchon, A.P., Kaelbling, L.P., and Warren, W.H. 1998. Ecological robotics. Adaptive Behavior, 6:473-507.Google Scholar
  11. Egelhaaf, M. 1985. On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly: II. figure-detection cells, a new class of visual interneurones. Biol. Cybern., 52:195-209.Google Scholar
  12. Egelhaaf, M. 1987. Dynamic properties of two control-systems underlying visually guided turning in house-flies. J. Comp. Physiol., A 161:777-783.Google Scholar
  13. Egelhaaf, M. and Borst, A. 1989. Transient and steady-state response properties of movement detectors. J. Opt. Soc. Am., A 6:116-127.Google Scholar
  14. Egelhaaf, M. and Borst, A. 1993. A look into the cockpit of the fly: visual orientation, algorithms, and identified neurons. J. Neurosci., 13:4563-4574.Google Scholar
  15. Egelhaaf, M., Borst, A., and Reichardt, W. 1989. Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly's nervous system. J. Opt. Soc. Am., A 6:1070-1087.Google Scholar
  16. Etienne-Cummings, R. and Van der Spiegel, J. 1996. Neuromorphic vision sensors. Sensors and Actuators, A 56:19-29.Google Scholar
  17. Field, D.J. 1987. Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am., A 4:2379-2394.Google Scholar
  18. Franceschini, N., Pichon, J.M., and Blanes, C. 1992. From insect vision to robot vision. Phil. Trans. R. Soc., B 337:283-294.Google Scholar
  19. Gibson, J.J. 1950. The Perception of the Visual World., Houghton-Mifflin: Boston.Google Scholar
  20. Götz, K.G. 1975. The optomotor equilibrium of the Drosophila navigation system. J. Comp. Physiol., 99:187-210.Google Scholar
  21. Haag, J. and Borst, A. 1997. Encoding of visual motion information and reliability in spiking and graded potential neurons. J. Neurosci., 17:4809-4819.Google Scholar
  22. Harrison, R.R. and Koch, C. 1998. An analog VLSI model of the fly elementary motion detector. In Advances in Neural Information Processing Systems 10. M.I. Jordan, M.J. Kearns, and S.A. Solla (Eds), MIT Press: Cambridge, Mass., pp. 880-886.Google Scholar
  23. Hassenstein, B. and Reichardt, W. 1956. Systemtheoretische Analyse der Zeit-, Reihenfolgen-, und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers, Chlorophanus. Z. Naturforsch., 11b:513-524.Google Scholar
  24. Hatsopoulos, N., Gabbiani, F., and Laurent, G. 1995. Elementary computation of object approach by a wide-field visual neuron. Science, 270:1000-1003.Google Scholar
  25. Hausen, K. and Egelhaaf, M. 1989. Neural mechanisms of visual course control in insects. In Facets of Vision, D.G. Stavenga and R.C. Hardie (Eds.), Berlin: Springer-Verlag.Google Scholar
  26. Higgins, C., Deutschmann, R., and Koch, C. 1999. Pulse-based 2D motion sensors. IEEE Trans. Circuits and Systems II, 46:677-687.Google Scholar
  27. Huber, S.A. 1997. Studies of the visual orientation behavior in flies using the artificial life approach. Ph.D. Thesis, Universität Tübingen, Germany.Google Scholar
  28. Kandel, E.R., Schwartz, J.H., Jessell, T.M. 1991. Principles of Neural Science, Appleton & Lange: Norwalk, Conn.Google Scholar
  29. Kern, R., Egelhaaf, M., and Srinivasan, M.V. 1997. Edge detection by landing honeybees: behavioural analysis and model simulations of the underlying mechanism. Vis. Research, 37:2103-2117.Google Scholar
  30. Kimmerle, B., Warzecha, A.-K., and Egelhaaf, M. 1997. Object detection in the fly during simulated translatory flight. J. Comp. Physiol., A 181:247-255.Google Scholar
  31. Krapp, H.G. and Hengstenberg, R. 1996. Estimation of self-motion by optic flow processing in single visual interneurons. Nature, 384:463-466.Google Scholar
  32. Lewis, M.A. 1998. Visual navigation in a robot using zig-zag behavior. In Advances in Neural Information Processing Systems 10, M.I. Jordan, M.J. Kearns, and S.A. Solla (Eds.), MIT Press: Cambridge, Mass., pp. 822-828.Google Scholar
  33. Matthies, L., Gat, E., Harrison, R., Wilcox, B., Volpe, R., and Litwin, T. 1995. Mars microrover navigation: performance evaluation and enhancement. Autonomous Robots, 2:291-311.Google Scholar
  34. Mead, C. 1989. Analog VLSI and Neural Systems, Reading, Mass.: Addison-Wesley.Google Scholar
  35. Moini, A., Bouzerdoum, A., Eshraghian, K., Yakovleff, A., Nguyen, X.T., Blanksby, A., Beare, R., Abbott, D., and Bonger, R.E. 1997. An insect vision-based motion detection chip. IEEE J. Solid State Circuits, 32:279-284.Google Scholar
  36. O'Carroll, D.C., Bidwell, N.J., Lauglin, S.B., and Warrant, E.J. 1996. Insect motion detectors matched to visual ecology. Nature, 382:63-66.Google Scholar
  37. Reichardt, W., Poggio, T., and Hausen, K. 1983. Figure-ground discrimination by relative movement in the visual system of the fly, part II: towards the neural circuitry. Biol. Cybern., 46:1-30.Google Scholar
  38. Reichardt, W. and Egelhaaf, M. 1988. Properties of individual movement detectors as derived from behavioral experiments on the visual system of the fly. Biol. Cybern., 58:287-294.Google Scholar
  39. Ruderman, D.L. and Bialek, W. 1994. Statistics of natural images: scaling in the woods. Phys. Rev. Lett., 73:814-817.Google Scholar
  40. Sarpeshkar, R., Kramer, J., Indiveri, G., and Koch, C. 1996. Analog VLSI architectures for motion processing: from fundamental limits to system applications. Proc. of the IEEE, 84:969-987.Google Scholar
  41. Single, S. and Borst, A. 1998. Dendritic integration and its role in computing image velocity. Science, 281:1848-1850.Google Scholar
  42. Srinivasan, M.V., Chahl, J.S., and Zhang, S.W. 1997. Robot navigation by visual dead-reckoning: inspiration from insects. Intl. J. Patt. Recog. and Art. Intelligence, 11:35-47.Google Scholar
  43. Warzecha, A.-K. and Egelhaaf, M. 1996. Intrinsic properties of biological motion detectors prevent the optomotor control system from getting unstable. Phil. Trans. R. Soc., B 351:1579-1591.Google Scholar
  44. Weckström, M., Juusola, M., and Laughlin, S.B. 1992. Presynaptic enhancement of signal transients in photoreceptor terminals in the compound eye. Proc. R. Soc. Lond., B 250:83-89.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Reid R. Harrison
    • 1
  • Christof Koch
    • 1
  1. 1.Computation and Neural Systems Program, MS 139-74California Institute of TechnologyPasadenaUSA

Personalised recommendations