Journal of Computational Neuroscience

, Volume 10, Issue 1, pp 25–45 | Cite as

Spike-Frequency Adaptation of a Generalized Leaky Integrate-and-Fire Model Neuron

  • Ying-Hui Liu
  • Xiao-Jing Wang


Although spike-frequency adaptation is a commonly observed property of neurons, its functional implications are still poorly understood. In this work, using a leaky integrate-and-fire neural model that includes a Ca2+-activated K+ current (IAHP), we develop a quantitative theory of adaptation temporal dynamics and compare our results with recent in vivo intracellular recordings from pyramidal cells in the cat visual cortex. Experimentally testable relations between the degree and the time constant of spike-frequency adaptation are predicted. We also contrast the IAHP model with an alternative adaptation model based on a dynamical firing threshold. Possible roles of adaptation in temporal computation are explored, as a a time-delayed neuronal self-inhibition mechanism. Our results include the following: (1) given the same firing rate, the variability of interspike intervals (ISIs) is either reduced or enhanced by adaptation, depending on whether the IAHP dynamics is fast or slow compared with the mean ISI in the output spike train; (2) when the inputs are Poisson-distributed (uncorrelated), adaptation generates temporal anticorrelation between ISIs, we suggest that measurement of this negative correlation provides a probe to assess the strength of IAHP in vivo; (3) the forward masking effect produced by the slow dynamics of IAHP is nonlinear and effective at selecting the strongest input among competing sources of input signals.

spike-frequency adaptation calcium-activated potassium current integrate-and-fire neuron variability correlation forward masking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott LF, van Vreeswijk C (1993) Asynchronous states in networks of pulse-coupled oscillators. Phys. Rev. E 48:1483-1490.Google Scholar
  2. Ahmed B, Anderson JC, Douglas RJ, Martin KAC, Whitteridge D (1998) Estimates of the net excitatory currents evoked by visual stimulation of identified neurons in cat visual cortex. Cerebral Cortex 8:462-476.Google Scholar
  3. Amit DJ, Tsodyks MV (1991) Quantitative study of attractor neural networks retrieving at low spike rates. Network 2:259-294.Google Scholar
  4. Baranyi A, Szente MB, Woody CD (1993a) Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. I. Patterns of firing activity and synaptic responses. J. Neurophysiol. 69:1850-1864.Google Scholar
  5. Baranyi A, Szente MB, Woody CD (1993b) Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. II. Membrane parameters, action potentials, current-induced voltage responses and electrotonic structures. J. Neurophysiol. 69:1865-1879.Google Scholar
  6. Barkai E, Hasselmo ME (1994) Modulation of the input-output function of rat piriform cortex pyramidal cells. J. Neurophysiol. 72:644-658.Google Scholar
  7. Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci.Google Scholar
  8. Calvin W, Stevens CF (1968) Synaptic noise and other sources of randomness in motoneuron interspike intervals. J. Neurophysiol. 31:574-587.Google Scholar
  9. Connors BW, Gutnick MJ, Prince DA (1982) Electrophysiological properties of neocortical neurons in vitro. J. Neurophysiol. 48:1302-1320.Google Scholar
  10. Douglas RJ, Koch C, Mahowald M, Martin KAC, Suarez HH (1995) Recurrent excitation in neocortical circuits. Science 269:981-985.Google Scholar
  11. Ermentrout GB (1998) Linearization of F-I curve by adaptation. Neural Comput. 7:1721-1729.Google Scholar
  12. Foehring R, Lorenzon NM, Herron P, Wilson CJ (1991) Correlation of physiologically and morphologically identified neuronal types in human association cortex in vitro. J. Neurophysiol. 65:1825-1837.Google Scholar
  13. Gabbiani F, Koch C (1996) Coding of time-varying signals in spike trains of integrate-and-fire neurons with random threshold. Neural Comput. 8:44-66.Google Scholar
  14. Guckenheimer J, Harris-Warrick R, Peck J, Willms A (1997) Bifurcation, bursting, and spike frequency adaptation. J. Comput. Neurosci. 4:257-277.Google Scholar
  15. Hansel D, Mato G, Meunier C, Neltner L (1998) On numerical simulations of integrate-and-fire neural networks. Neural Comput. 10:467-484.Google Scholar
  16. Helmchen F, Imoto K, Sakmann B (1996) Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys. J. 70:1069-1081.Google Scholar
  17. Holden AV (1976) Models of the Stochastic Activity of Neurones. New York, Springer Verlag.Google Scholar
  18. Holt GR, Softky WR, Koch C, Douglas RJ (1996) Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. J. Neurophysiol. 75:1806-1814.Google Scholar
  19. Knight B (1972) Dynamics of encoding in a population of neurons. J. Gen. Physiol. 59:734-766.Google Scholar
  20. Koch C (1999) Biophysics of Computation. New York, Oxford University Press.Google Scholar
  21. Lancaster B, Zucker RS (1994) Photolytic manipulation of Ca2+ and the time course of slow, Ca2+-activated K+ current in rat hippocampal neurones. J. Physiol. Lond. 475:229-239.Google Scholar
  22. Lapicque L (1907) Recherches quantitatives sur l'excitation è lectrique des nerfs traitè e comme une polarisation. J. Physiol. Pathol. Gen. 9:620-635.Google Scholar
  23. Lapicque L (1927) L'excitabilitè en fonction du temps. Presses Universitaires de France, Paris.Google Scholar
  24. Lorenzon NM, Foehring RC (1992) Relationship between repetitive firing and afterhyperpolarizations in human neocortical neurons. J. Neurophysiol. 67:350-363.Google Scholar
  25. Madison DV, Nicoll RA (1984) Control of the repetitive discharge of rat CA1 pyramidal neurons in vitro. J. Physiol. 345:319-331.Google Scholar
  26. Markram H, Helm PJ, Sakmann B (1995) Dendritic calcium transients evoked by single back-propagating action potentials in rat neocortical pyramidal neurons. J. Physiol. Lond. 485:1-20.Google Scholar
  27. Mason A, Larkman A (1990) Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. J. Neurosci. 10:1415-1428.Google Scholar
  28. McCormick DA, Connors BW, Lighthall JW, Prince DA(1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J. Neurophysiol. 54:782-805.Google Scholar
  29. McCormick DA, Williamson A (1989) Convergence and divergence of neurotransmitter action in human cerebral cortex. Proc. Natl. Acad. Sci. USA 86:8098-8102.Google Scholar
  30. Nicoll RA (1988) The coupling of neurotransmitter receptors to ion channels in the brain. Science 241:545-551.Google Scholar
  31. Pollack GS (1988) Selective attention in an insect auditory neuron. Spike-Frequency Adaptation with Stochastic Inputs 45 J. Neurosci. 8:2635-2639.Google Scholar
  32. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1989) Numerical Recipes. Cambridge University Press, Cambridge.Google Scholar
  33. Ricciardi LM (1977) Diffusion Processes and Related Topics in Biology. Springer-Verlag, Berlin.Google Scholar
  34. Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W (1997) Spikes: Exploring the Neural Code. MIT Press, Cambridge, MAS.Google Scholar
  35. Rinzel J (1985) Bursting oscillations in an excitable membrane model, in ordinary and partial differential equations. Lecture Notes in Mathematics. Springer, New York. vol. 1151, pp. 304-316.Google Scholar
  36. Rinzel J (1987) A formal classification of bursting mechanisms in excitable systems. In: Gleason, AM, ed. Proceedings of the International Congress of Mathematicians. American Mathematical Society, Providence, RI. pp. 1578-1594.Google Scholar
  37. Schiller J, Helmchen F, Sakmann B (1995) Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurones. J. Physiol. 487(3):583-600.Google Scholar
  38. Shadlen MN, Newsome WT (1994) Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4:569-579.Google Scholar
  39. Shi WX, Rayport S (1994) GABA synapses formed in vitro by local axon collaterals of nucleus accumbens neurons. J. Neurosci. 14:4548-4560.Google Scholar
  40. Sobel EC, Tank DW (1994) In vivo Ca2+ dynamics in a cricket auditory neuron: An example of chemical computation. Science 263:823-826.Google Scholar
  41. Softky WR (1995) Simple codes versus efficient codes. Curr. Opin. Neurobiol. 5:239-247.Google Scholar
  42. Softky WR, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13:334-350.Google Scholar
  43. Somers D, Nelson S, Sur M (1995) An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15:5448-5465.Google Scholar
  44. Stein RB (1965) A theoretical analysis of neuronal variability. Biophys. J. 5:173-195.Google Scholar
  45. Stein RB (1967) Some models of neuronal variability. Biophys. J. 7:37-68.Google Scholar
  46. Stemmler M, Usher M, Niebuhr E (1995) Lateral interaction in primary visual cortex: A model bridging physiology and psychophysics. Science 269:1977-1880.Google Scholar
  47. Svoboda K, Denk W, Kleinfeld D, Tank D (1997) In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385:161-165.Google Scholar
  48. Tamás G, Buhl EH, Somogyi P (1997) Massive autaptic selfinnervation of GABAergic neurons in cat visual cortex. J. Neurosci. 17:6352-6364.Google Scholar
  49. Traub RD (1982) Simulation of intrinsic bursting in CA3 hippocampal neurons. Neurosci. 7:1233-1242.Google Scholar
  50. Treves A (1993) Mean-field analysis of neuronal spike dynamics. Network 4:259-284.Google Scholar
  51. Troyer TW, Miller KD (1997) Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell. Neural Comput. 9:971-983.Google Scholar
  52. Tuckwell H (1988) Introduction to Theoretical Neurobiology. Cambridge University Press, Cambridge. vol. 2.Google Scholar
  53. van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274:1724-1726.Google Scholar
  54. Wang XJ (1998) Calcium coding and adaptive temporal computation in cortical pyramidal neurons. J. Neurophysiol. 79:1549-1566. Corrigendum, J. Neurophysiol. 79 (March 1998).Google Scholar
  55. Wang XJ, Rinzel J (1995) Oscillatory and bursting properties of neurons. In: Arbib MA, ed. The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge, MA. pp. 686-691.Google Scholar
  56. Wax N, ed. (1954) Selected Papers on Noise and Stochastic Processes. Dover, New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Ying-Hui Liu
    • 1
  • Xiao-Jing Wang
    • 1
  1. 1.Volen Center for Complex Systems and Department of PhysicsBrandeis UniversityWaltham

Personalised recommendations