A study on sintering and microstructure development of fritless silver thick film conductors

  • Sunit Rane
  • Vijaya Puri
  • Dinesh Amalnerkar
Article

Abstract

Thick film materials have proved to possess economic processing and functional advantages over other technologies in high-volume production of miniaturized circuits. The development of a low-cost fritless silver paste with different binder composition is described in the present work. The effect of composition and firing temperature (700–900 °C) on the microstructure is also reported. The sheet resistivity and surface morphology of all the indigenously formulated Ag thick film pastes are compared with the imported (ESL) paste. The results suggest that the thick films can be fired at 700 °C instead of the conventional 900 °C firing temperature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. PURI, Hybrid Circuits 34 (1994) 28.Google Scholar
  2. 2.
    S. B. RANE and VIJAYA PURI, in Proceedings of the International Symposium on Emerging Microelectronics & Interconnection Technology (Bangalore, India, Feb. 1998) p. 395.Google Scholar
  3. 3.
    S. RANE and V. PURI, IETE Tech. Rev. 16 (1999) 129.Google Scholar
  4. 4.
    S. RANE, PhD Thesis, Shivaji University, Kolhapur, India (1999).Google Scholar
  5. 5.
    M. MANDHARE, S. GANGAL, M. SETTY and R. KAREKAR, Act. Passive Electron. Compon. 13 (1988) 45.Google Scholar
  6. 6.
    S. NISHIKI and S. YUKI, IEEE Trans. Microw. Theory Tech. MTT-30 7 (1982) 1104.Google Scholar
  7. 7.
    P. BARNWELL, J. WOOD and Q. REYNOLDS, in Proceedings of the International Symposium on Emerging Microelectronics and Interconnection Technology (Bangalore, India, Feb. 1998) p. 399.Google Scholar
  8. 8.
    J. C. LIN and C. Y. WANG, Mater. Chem. Phys. 45 (1996) 253.Google Scholar
  9. 9.
    S. RANE and V. PURI, Act. Passive Electron. Compon. (submitted) (March 2000).Google Scholar
  10. 10.
    C. Y. KUO, in Proceedings of ISHM (1987) p. 562.Google Scholar
  11. 11.
    B. E. TAYLOR, J. J. FELTEN and J. R. LARRY, IEEE Trans. Compon. Hybrid Manuf. Technol. CHMT-3 4 (1980) 504.Google Scholar
  12. 12.
    T. OGAWA, M. OOTANI, T. ASAI, M. HASEGAWA and O. ITO, ibid. 4 (1980) 504.Google Scholar
  13. 13.
    W. BORLAND, V. P. SINTA, Mater. Res. Soc. 108 (1988) 382.Google Scholar
  14. 14.
    W. SMETANA, and R. REICHER, in Proceedings of the Thirty third International Conference on Microelectronics. MIDEM-27 (1997) 260.Google Scholar
  15. 15.
    R. W. VEST, Materials Aspect of Thick Film Technology, ("Handbook of Electronics Ceramics") edited by R. C. Buchanan, NY, 1993 p. 443.Google Scholar
  16. 16.
    R. W. VEST, Ceram. Bull. 65 (1986) 435.Google Scholar
  17. 17.
    C. J. CHEN and J. M. WU, J. Mater. Res. 5 (1990) 1530.Google Scholar
  18. 18.
    M. ZHU and D. D. L. CHUNG, J. Electron. Mater. 23 (1994) 541.Google Scholar
  19. 19.
    A. ADABNIG, J. C. SCHUSTER, R. REICHER and W. SMETANA, J. Mater. Sci. 33 (1998) 4887.Google Scholar
  20. 20.
    C. PEYTOUR, F. BARBIER and A. REVEOLVESCHI, J. Mater. Res. 5 (1990) 127.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Sunit Rane
    • 1
  • Vijaya Puri
    • 1
  • Dinesh Amalnerkar
    • 2
  1. 1.Thick & Thin Film Device Lab, Department of PhysicsShivaji UniversityKolhapurIndia
  2. 2.Centre for Materials for Electronics Technology, PanchawatiPuneIndia

Personalised recommendations