Mechanical properties and corrosion resistance of Ti–6Al–7Nb alloy dental castings

  • E. Kobayashi
  • T.J. Wang
  • H. Doi
  • T. Yoneyama
  • H. Hamanaka


With the aim of applying a novel titanium alloy, Ti–6Al–7Nb, to a dental casting material, a comprehensive research work was carried out on its characteristics, such as castability, mechanical properties and corrosion resistance in the present study. As a result, Ti–6Al–7Nb alloy exhibited sufficient castability by a dental casting method for titanium alloys and enough mechanical properties for dental application. It is also showed excellent corrosion resistance through an immersion test in 1.0% lactic acid and an anodic polarization test in 0.9% NaCl solution. From these results, it is concluded that this Ti–6Al–7Nb alloy is applicable as a dental material in place of Ti–6Al–4V alloy, which includes cytotoxic vanadium.


Mechanical Property Vanadium Lactic Acid Corrosion Resistance Titanium Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Hamanaka and T. Yoneyama, Boushoku Gijutsu 38 (1989) 333.Google Scholar
  2. 2.
    E. Kobayashi, S. Matsumoto, H. Doi, T. Yoneyama and H. Hamanaka, J. Biomed. Mater. Res. 29 (1995) 943.Google Scholar
  3. 3.
    H. Doi, M. Kotake, T. Yoneyama and H. Hamanaka, Rep. Inst. Med. Dent. Eng., Tokyo Med. Dent. Univ. 28 (1994) 64.Google Scholar
  4. 4.
    E. Kobayashi, H. Doi, M. Takahashi, T. Nakano, T. Yoneyama and H. Hamanaka, J. Jpn. Soc. Dent. Mater. Devices. 14 (1995) 406.Google Scholar
  5. 5.
    R. C Browne, Br. J. Ind. Med. 12 (1955) 57.Google Scholar
  6. 6.
    F. H. Hulcher, Spectrophotometric Biol. Mater. 32 (1960) 1183.Google Scholar
  7. 7.
    S. G. Sjoberg, Acta Med. Scand. 154 (1956) 381.Google Scholar
  8. 8.
    S. G. Sjoberg and K-G. Rigner, Nord. Hyg. Tidskr. 37 (1956) 217.Google Scholar
  9. 9.
    M. F. Semlitsch, H. Weber, R. M. Steicher and R. SchÖn, Biomater. 13 (1992) 781.Google Scholar
  10. 10.
    A. Yamamoto, R. Honma and M. Sumita, J. Jpn Soc. Biomater. 14 (1995) 158.Google Scholar
  11. 11.
    A. Yamamoto, T. Kobayashi, N. Maruyama and M. Sumita, ibid. 14 (1996) 167.Google Scholar
  12. 12.
    ASTM F 1295-92 (American Society for Testing and Materials, Philadelphia, PA, 1992).Google Scholar
  13. 13.
    ISO 6871 (1987).Google Scholar
  14. 14.
    T. Yoneyama, H. Doi and H. Hamanaka, J. Jpn. Soc. Biomater. 11 (1993) 71.Google Scholar
  15. 15.
    L. S. Darken and R. W. Gurry, in “Physical Chemistry of Metals” (McGraw-Hill, New York, 1953) p. 349.Google Scholar
  16. 16.
    H. Doi, T. Yoneyama, M. Kotake and H. Hamanaka, J. Jpn Soc. Dent. Mater. Devices 13 (1992) 817.Google Scholar
  17. 17.
    C. J. Smithells, in “Metals Reference Book”, 4th Edn, Vol. 1, (Butterworths, London, 1967) p. 140.Google Scholar
  18. 18.
    J. L. Murray, in “Phase Diagrams of Binary Titanium Alloys” (ASM International. Metals Park, OH, 1987) p. 188.Google Scholar
  19. 19.
    Idem, ibid., p. 319.Google Scholar
  20. 20.
    H. Mimura and Y. Miyagawa, J. Jpn Soc. Dent. Mater. Devices 15 (1996) 283.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • E. Kobayashi
    • 1
  • T.J. Wang
    • 1
  • H. Doi
    • 1
  • T. Yoneyama
    • 1
  • H. Hamanaka
    • 1
  1. 1.Institute for Medical and Dental EngineeringTokyo Medical and Dental UniversityChiyoda-kuJapan

Personalised recommendations