Journal of Computational Neuroscience

, Volume 7, Issue 1, pp 5–15 | Cite as

Role of an A-Type K+ Conductance in the Back-Propagation of Action Potentials in the Dendrites of Hippocampal Pyramidal Neurons

  • M. Migliore
  • D.A. Hoffman
  • J.C. Magee
  • D. Johnston


Action potentials elicited in the axon actively back-propagate into the dendritic tree. During this process their amplitudes can be modulated by internal and external factors. We used a compartmental model of a hippocampal CA1 pyramidal neuron to illustrate how this modulation could depend on (1) the properties of an A-type K+ conductance that is expressed at high density in hippocampal dendrites and (2) the relative timing of synaptic activation. The simulations suggest that the time relationship between pre- and postsynaptic activity could help regulate the amplitude of back-propagating action potentials, especially in the distal portion of the dendritic tree.

computational model action potential back propagation KA conductance associative interactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barrionuevo G, Brown TH (1983) Associative long-term potentiation in hippocampal slices. Proc. Natl. Acad. Sci. USA 80: 7347–7351.Google Scholar
  2. Bekkers JM, Stevens CF (1990) Computational implications of NMDA receptor channels. Cold Spring Harb. Symp. Quant. Biol. 55: 131–135.Google Scholar
  3. Bernander Ö, Koch C, Douglas RJ (1994) Amplification and linearization of distal synaptic input to cortical pyramidal cells. J. Neurophysiol. 72: 2743–2753.Google Scholar
  4. Bi GQ, Poo MM (1998) Synaptic modification in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18: 10464–10472.Google Scholar
  5. Cash S, Yuste R (1998) Input summation by cultured pyramidal neurons is linear and position-independent. J. Neurosci. 18: 10–15.Google Scholar
  6. Cash S, Yuste R (1999) Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron 22: 383–394.Google Scholar
  7. Colbert CM, Johnston D (1996) Axonal action-potential initiation and NaC channel densities in the soma and axon initial segment of subicular pyramidal neurons. J. Neurosci. 16: 6676–6686.Google Scholar
  8. Colbert CM, Johnston D (1998) Protein Kinase C activation decreases activity-dependent attenuation of dendritic NaC current in hippocampal CA1 pyramidal neurons. J. Neurophysiol. 79: 491–495.Google Scholar
  9. Colbert CM, Magee JC, Hoffman DA, Johnston D (1997) Slow recovery from inactivation of NaC channels underlie the activity dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons. J. Neurosci. 17: 6512–6521.Google Scholar
  10. Covarrubias M, Wei A, Salkoff L, Vyas TB (1994) Elimination of rapid potassium channel inactivation by phosphorylation of the inactivation gate. Neuron 13: 1403–1412.Google Scholar
  11. Debanne D, Gähwiler BH, Thompson SM(1998) Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J. Physiol. (Lond.) 507: 237–247.Google Scholar
  12. Drain P, Dubin AE, Aldrich RW (1994) Regulation of Shaker KC channel inactivation gating by the cAMP-dependent protein kinase. Neuron 12: 1097–1109.Google Scholar
  13. Gustafsson B, Asztely F, Hanse E, Wigström H (1989) Onset characteristics of long-term potentiation in the guinea-pig hippocampal CA1 region in vitro. Eur. J. Neurosci. 1: 382–394.Google Scholar
  14. Hines M, Carnevale NT (1997) The NEURON simulation environment. Neural Comp. 9: 1178–1209.Google Scholar
  15. Hoffman DA, Johnston D (1998) Down-regulation of transient KC channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC. J. Neurosci. 18: 3521–3528.Google Scholar
  16. Hoffman DA, Johnston D (1999) Neuromodulation of dendritic action potentials. J. Neurophysiol. 81: 408–411.Google Scholar
  17. Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) Potassium channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387: 869–875.Google Scholar
  18. Holmes WR (1986) Cable theory modeling of the effectiveness of synaptic inputs in cortical pyramidal cells. Ph.D. Thesis, University of California, Los Angeles.Google Scholar
  19. Johnston D, Amaral DG (1998) Hippocampus. In: GM Shepherd, ed. The Synaptic Organization of the Brain, 4th ed. Oxford University Press, New York. pp. 417–458.Google Scholar
  20. Jefferys JG (1975) Propagation of action potentials into the dendrites of hippocampal granule cells in vitro. J. Physiol. (Lond.) 249: 16P–18P.Google Scholar
  21. Jung H, Mickus T, Spruston N (1997) Prolonged sodium channel inactivation contributes to dendritic action potential attenuation in hippocampal pyramidal neurons. J. Neurosci. 17: 6639–6646.Google Scholar
  22. Kelso SR, Brown TH (1986) Differential conditioning of associative synaptic enhancement in hippocampal brain slices. Science 232: 85–87.Google Scholar
  23. Koester HJ, Sakmann B (1998) Calcium dynamics in single spines during coincident pre-and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. Proc. Natl. Acad. Sci. USA 95: 9596–9601.Google Scholar
  24. Levy WB, Steward O (1983) Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neurosci. 8: 791–797.Google Scholar
  25. Magee, JC (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci.Google Scholar
  26. Magee JC (1999) Dendritic l-h normalizes temporal summation in hippocampal CA1 neurons. Nature Neurosci. 2: 508–514.Google Scholar
  27. Magee JC, Johnston D (1995) Characterization of single voltage gated NaC and Ca2C channels in apical dendrites of rat CA1 pyramidal neurons. J. Physiol. 487: 67–90.Google Scholar
  28. Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275: 209–213.Google Scholar
  29. Mainen ZF, Joerges J, Huguenard JR, Sejnowski TJ (1995) A model of spike initiation in neocortical pyramidal neurons. Neuron 15: 1427–1439.Google Scholar
  30. Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275: 213–215.Google Scholar
  31. Mickus T, Jung HY, Spruston N (1999) Properties of slow, cumulative sodium channel inactivation in rat hippocampal CA1 pyramidal neurons. Biophys. J. 76: 846–860.Google Scholar
  32. Migliore M (1996) Modeling the attenuation and failure of action potentials in the dendrites of hippocampal neurons. Biophys. J. 71: 2394–2403.Google Scholar
  33. Migliore M, Culotta M (1998) Energy efficient modulation of dendritic processing functions. Biosystems 48: 157–163.Google Scholar
  34. Rapp M, Yarom Y, Segev I (1996) Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells. Proc. Natl. Acad. Sci. USA 93: 11985–11990.Google Scholar
  35. Rockland KS, Virga A (1989) Terminal arbors of individual feedback axons projecting from area V2 to V1 in the macaque monkey: A study using immunocitochemistry of anterogradely transported phaseoulus vulgaris-leucoagglutinin. J. Comp. Neurol. 285: 54–72.Google Scholar
  36. Schiller J, Schiller Y, and Clapham DE (1998). NMDA receptors amplify calcium influx into dendritic spines during associative pre-and postsynaptic activation. Nature Neurosci. 1: 114–118.Google Scholar
  37. Spruston N, Schiller Y, Stuart G, Sakmann B (1995) Activitydependent action potential invasion and Ca2C influx into hippocampal CA1 dendrites. Science 268: 297–300.Google Scholar
  38. Stuart G, Häusser M (1992) Initiation and spread of sodium action potentials in cerebellar Purkinje cells. Neuron 13: 703–712.Google Scholar
  39. Stuart G, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367: 69–72.Google Scholar
  40. Tongiorgi E, Righi M, Cattaneo A (1997) Activity-dependent dendritic targeting of BDNF and TrkB mRNAs in hippocampal neurons. J. Neurosci. 17: 9492–9505.Google Scholar
  41. Zador A, Koch C, Brown TH (1990) Biophysical model of a Hebbian synapse. Proc. Natl. Acad. Sci. USA 87: 6718–6722.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • M. Migliore
    • 1
  • D.A. Hoffman
    • 2
  • J.C. Magee
    • 3
  • D. Johnston
    • 2
  1. 1.National Research Council, Institute of Advanced Diagnostic MethodologiesPalermoItaly
  2. 2.Division of NeuroscienceBaylor College of MedicineHouston
  3. 3.Neuroscience CenterLouisiana State University Medical CenterNew Orleans

Personalised recommendations