Journal of Computational Neuroscience

, Volume 6, Issue 2, pp 145–168 | Cite as

An Improved Parameter Estimation Method for Hodgkin-Huxley Models

  • Allan R. Willms
  • Deborah J. Baro
  • Ronald M. Harris-Warrick
  • John Guckenheimer


We consider whole-cell voltage-clamp data of isolated currents characterized by the Hodgkin-Huxley paradigm. We examine the errors associated with the typical parameter estimation method for these data and show them to be unsatisfactorally large especially if the time constants of activation and inactivation are not sufficiently separated. The size of these errors is due to the fact that the steady-state and kinetic properties of the current are estimated disjointly. We present an improved parameter estimation method that utilizes all of the information in the voltage-clamp conductance data to estimate steady-state and kinetic properties simultaneously and illustrate its success compared to the standard method using simulated data and data from P. interruptus shal channels expressed in oocytes.

Hodgkin-Huxley models parameter estimation voltage clamp least squares 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baro DJ, Coniglio LM, Cole CL, Rodriguez HE, Lubell JK, Kim MT, Harris-Warrick RM (1996) Lobster shal: Comparison with Drosophila shal and native potassium currents in identified neurons. J. Neurosci. 16:1689–1701.Google Scholar
  2. Baro DJ, Levini RM, Kim MT, Willms AR, Cole CL, Rodriguez HE, Harris-Warrick RM (1997) Quantitative single-cell-reverse transcription–PCR demonstrates that A-current magnitude varies as a linear function of shal gene expression in identified stomatogastric neurons. J. Neurosci. 17:6597–6610.Google Scholar
  3. Buchholtz F, Golowasch J, Epstein IR, Marder E (1992) Mathematical model of an identified stomatogastric ganglion neuron. J. Neurophysiol. 67:332–340.Google Scholar
  4. Filatov GN, Nguyen TP, Kraner SD, Barchi RL (1998) Inactivation and secondary structure in the D4/S4-5 region of the SkM1 sodium channel. J. Gen. Physiol. 111:703–715.Google Scholar
  5. Golowasch J, Buchholtz F, Epstein IR, Marder E (1992) Contribution of individual ionic currents to activity of a model stomatogastric ganglion neuron. J. Neurophysiol. 67:341–349.Google Scholar
  6. Golowasch J, Marder E (1992) Ionic currents of the lateral pyloric neuron of the stomatogastric ganglion of the crab. J. Neurophysiol. 67:318–331.Google Scholar
  7. Harris-Warrick RM, Coniglio LM, Barazangi N, Guckenheimer J, Gueron S (1995) Dopamine modulation of transient potassium current evokes phase shifts in a central pattern generator network. J. Neurosci. 15:342–358.Google Scholar
  8. Harris-Warrick RM, Coniglio LM, Levini RM, Gueron S, Guckenheimer J (1995) Dopamine modulation of two subthreshold currents produces phase shifts in activity of an identified motoneuron. J. Neurophysiol. 74:1404–1420.Google Scholar
  9. Hille B (1992) Ionic Channels of Excitable Membranes. Sinauer, Sunderland, MA.Google Scholar
  10. Hodgkin AL, Huxley AF (1952a) The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. Lond. 116:497–506.Google Scholar
  11. Hodgkin AL, Huxley AF (1952b) Aquantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. Lond. 117:500–544.Google Scholar
  12. Jerng HH, Covarrubias M (1997) K+ channel inactivation mediated by concerted action of the cytoplasmic N-and C-terminal domains. Biophys. J. 72:163–174.Google Scholar
  13. Johnston D, Wu SM (1995) Foundations of Cellular Neurophysiology. MIT Press, Cambridge, MA.Google Scholar
  14. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1988) Numerical Recipes in Fortran: The Art of Scientific Computing. Cambridge University Press, Cambridge, MA.Google Scholar
  15. Wei A, Covarrubias M, Butler A, Baker K, Pak M, Salkoff L (1990) K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse. Science 248:599–603.Google Scholar
  16. Willms AR (1997) Hodgkin-Huxley Models: Parameter Estimation Issues, an Application to Spike Frequency Adaptation, and Analysis of a Subcritical Hopf-Homoclinic Bifurcation. Ph.D. thesis, Cornell University.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Allan R. Willms
    • 1
  • Deborah J. Baro
    • 2
  • Ronald M. Harris-Warrick
    • 2
  • John Guckenheimer
    • 3
  1. 1.Biomathematics Research Centre, Department of Mathematics and StatisticsUniversity of CanterburyChristchurchNew Zealand
  2. 2.Section of Neurobiology and BehaviorCornell UniversityIthaca
  3. 3.Department of Mathematics and Center for Applied MathematicsCornell UniversityIthaca

Personalised recommendations