Advertisement

Ecology of a plant growth-promoting strain of Pseudomonas fluorescens colonizing the maize endorhizosphere in tropical soil

  • G.R. Botelho
  • V. Guimarães
  • M. De Bonis
  • M.E.F. Fonseca
  • A.N. Hagler
  • L.C.M. Hagler
Article

Abstract

Pseudomonas fluorescens strain BR-5 stimulated the growth of maize in a natural soil and inhibited fungal root pathogens in vitro. Strain BR-5 was detected inside plant cells, indicating that it is able to colonize the endorhizosphere. No significant effect was detected on soil or ectorhizosphere microbial population after inoculation of strain BR-5 onto seeds.

Maize growth Pseudomonas fluorescens rhizosphere 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, M. 1982 Most probable number method for microbial populations In: Methods of Soil Analysis, eds Miller, R.H. & Keneey, C.R. Vol. 2, pp. 949–968. Madison: American Society of Agronomy.Google Scholar
  2. Ankenbauer, R.G. & Cox, C.D. 1988 Isolation and characterization of Pseudomonas aeruginosa mutants requiring salycilic acid for pyochelin biosynthesis. Journal of Bacteriology 170, 5364–5365.Google Scholar
  3. Araújo, M.A.V., Mendonça-Hagler, L.C., Hagler A.N. & van Elsas, J.D. 1994 Survival of genetically modified Pseudomonas fluorescens introduced into subtropical soils microcosms. FEMS Microbiology Ecology 13, 205–216.Google Scholar
  4. Araújo, M.A.V., Mendonç-Hagler, L.C., Hagler A.N. & van Elsas, J.D. 1995 Competition between a genetically modified Pseudomonas fluorescens and its parent in subtropical soil microcosms. Revista de Microbiologia 26, 6–15.Google Scholar
  5. Barbosa, M.A.G., Michereff, S.J. Mariano, R.L.R. & Maranhão, E. 1995 Biocontrole de Rhizoctonia solani em caupi pelo tratamento de sementes com Pseudomonas spp. fluorescentes. Grupo Paulista de Fitopatologia 21(2), 151–157.Google Scholar
  6. Carruthers, F.L., Conner, A.J. & Mahanty, H.K. 1994 Identification of a genetic locus in Pseudomonas aureofaciens involved in fungal inhibition. Applied and Environmental Microbiology 60, 71–77.Google Scholar
  7. Darbyshire J.F. & Greaves M.P. 1971 The invasion of pea roots Pisum sativum L. by soil microorganisms, Acanthamoeba palestinensis (Reich) and Pseudomonas sp. Soil Biology and Biochemistry. 3, 151–155.Google Scholar
  8. Gaskins, M.H., Albrecht, S.L. & Hubbell, D.H. 1985 Rhizosphere bacteria and their use to increase plant productivity: a review. Agriculture, Ecosystems and Environment 12, 99–116.Google Scholar
  9. Gould, W.D., Hagedorn, C., Bardinelli, T.R.C. & Zablotowicz, R.M. 1985 New selective media for enumeration and recovery of fluorescent pseudomonads from various habitats. Applied and Environmental Microbiology 49, 28–32.Google Scholar
  10. Hartel, P.G., Fuhrmann, J.J., Johnson Jr., W.F., Lawrence, E.G., Loppez, C.S., Mullen, M.D., Skidder, H.D., Staley, T.E., Wolf, D.C., Wollum II, A.G. & zuberer, D.A. 1994 Survival of a lac ZY-containing Pseudomonas putida strain under stressful abiotic conditions. Soil Science Society of American Journal 58, 770–776.Google Scholar
  11. Kloepper, J.W., Leong, J., Teintze, M. & Schroth, M.N 1980 Pseudomonas siderophores: a mechanism explaining disease supressive soil. Current Microbiology 4, 317–320.Google Scholar
  12. Lambert, B., Leyns, F., van Rooyen, L., Gosselé F. & Pappon, Y. 1987 Rhizobacteria of maize and their antifugal activities. Applied and Environmental Microbiology 53, 1866–1871.Google Scholar
  13. Lemanceau, P., Corberand, T., Gardan, L., Latour, X., Laguerre, G., Boeufgras, J.M. & Alabouvette, C. 1995 Effect of two plant species, flax (Linum usitatissinum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations of fluorescent pseudomonads. Applied and Environmental Microbiology 61, 1004–1012.Google Scholar
  14. Obukowicz, M.G., Perlak, F.J., Kusano-Kretzmer, K., Mayer, E.J. Bolten, S.L. & Watrud, L.S. 1986 Tn-5-mediated integration of delta-endotoxin gene from Bacillus thuringiensis into chromossome of root colonizing pseudomonads. Journal of Bacteriology 168, 982–989.Google Scholar
  15. Panthier, J.J., Demand, H.G. & Dommergues, Y. 1979 Rapid method to enumerate and isolate soil actinomycetes antagonist towards rhizobia. Soil Biology and Biochemistry 11, 443–445.Google Scholar
  16. Patrquin, D.G. & Döbereiner, J. 1978 Light microscopy observations of tetrazolium reducing bacteria in the endorhizosphere of maize and other grasses in Brazil. Canadian Journal of Microbiology 24, 734–743.Google Scholar
  17. Pierson, E.A. & Weller, D.M. 1994 Use of mixtures of fluorescent Pseudomonads to suppress Take-all and improve the growth of wheat. Phytopathology 84, 940–947.Google Scholar
  18. Schroth, M.N. & Hancock, J.G. 1982 Disease supressive soil and root-colonizing bacteria. Science 216, 1376–1381.Google Scholar
  19. Tabatabai, M.A. 1982 Methods of Soil Analysis, eds Miller, R.H. & Keneey, D.R., Vol. 2. pp. 937–940. Madison: American Society of Agronomy.Google Scholar
  20. Thomashow, L.S. & Weller, D.M. 1988 Role of a phenazine antibiotic from Pseudomonas fluorescens in biocontrol of Gaeumannomyces graminis var. tritici. Journal of Bacteriology 170, 3499–3508.Google Scholar
  21. Van Elsas, J.D., van Overbeek, L.S., Feldmann, A.M., Dullemans, A.M. & de Leeuw, O. 1991 Survival of genetically engineered Pseudomonas fluorescens in soil in competition with the parent strain. FEMS Microbiology Ecology 85, 53–64.Google Scholar
  22. Van Elsas, J.D. 1992 Environmental pressure imposed on GEMMOs in soil. In: The Release of Genetically Modified Microorganisms. eds Stewart-Tull, D.E.S. & Sussman, M. pp. 1–14. New York: Plenum Press.Google Scholar
  23. Weller, D.M. & Cook, R.J. 1983 Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73, 463–469.Google Scholar
  24. Wollum II, A.G. 1982 Cultural methods for soil microorganisms. In: Methods of Soil Analysis, eds Miller, R.H. & Keneey, D.R. Vol. 2. pp. 781–801. Madison: American Society of Agronomy.Google Scholar

Copyright information

© Rapid Science Publishers 1998

Authors and Affiliations

  • G.R. Botelho
    • 1
  • V. Guimarães
    • 1
  • M. De Bonis
    • 2
  • M.E.F. Fonseca
    • 2
  • A.N. Hagler
    • 1
  • L.C.M. Hagler
    • 1
  1. 1.Departamento de Microbiologia Geral, Laboratório de Ecologia e Taxonomia Microbiana, Ilha do Fundão, Rio de JaneiroUniversidade Federal do Rio de Janeiro, Centro de Ciências da Saúde (CCS) Bloco I, Instituto de MicrobiologiaBrazil
  2. 2.Departamento de Virologia, Laboratório de Microscopia Electrônica, Ilha do FundãoUniversidade Federal do Rio de Janeiro, Centro de Ciências da Saúde (CCS) Bloco I, Instituto de MicrobiologiaRio de JaneiroBrazil

Personalised recommendations