Advertisement

Transgenic Research

, Volume 7, Issue 1, pp 51–59 | Cite as

Genetic transformation and regeneration of mature tissues of woody fruit plants bypassing the juvenile stage

  • Magdalena Cervera
  • Jose Juarez
  • Antonio Navarro
  • Jose A. Pina
  • Nuria Duran-Vila
  • Luis Navarro
  • Leandro Pena
Article

Abstract

Regeneration and transformation systems from mature plant material of woody fruit species have to be achieved as a necessary requirement for the introduction of useful genes into specific cultivars and the rapid evaluation of resulting horticultural traits. We report here, for the first time, a procedure for genetic transformation and regeneration of mature tissues of woody plants that overcomes the long juvenile periods and high heterozygosity that are characteristic of most of these species. An improved regeneration frequency from mature explants was obtained by invigoration of the plant material through grafting of mature buds on juvenile seedlings. Co-cultivation of the explants in feederplates after inoculation with Agrobacterium tumefaciens resulted in enhanced transformation frequencies. Furthermore, in vitro shoot-tip grafting of the regenerated mature shoots on seedling rootstocks provided a rapid and efficient system for plant production. Citrus is the most extensivel y grown fruit crop worldwide and sweet orange (Citrus sinensis L. Osbeck) accounts for approximately 70% of the Citrus total production. Mature transgenic sweet orange plants have been obtained, which flowered and bore fruit in 14 months

sweet orange Citrus woody transformation Agrobacterium mature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, R.G. and Gardner, R.C. (1993) Regeneration of transgenic tamarillo plants. Plant Cell Rep. 12, 347-51.Google Scholar
  2. Brasileiro, A.C.M., Leple, J.C., Muzzin, J., Ounnoughi, D., Michel, M.F. and Jouanin, L. (1991) An alternative approach for gene transfer in trees using wild-type Agrobacterium strains. Plant Mol. Biol. 17, 441-52.Google Scholar
  3. Cabrera-Ponce, J.L., Vegas-Garcia, A. and Herrera-Estrella, L. (1995) Herbicide resistant transgenic papaya plants produced by an efficient particle bombardment transformation methods. Plant Cell Rep. 15, 1-7.Google Scholar
  4. da Câmara Machado, A., Puschmann, M., Pühringer, H., Kremen, R., Katinger, H. and Laimer da Câmara Machado, M. (1995) Somatic embryogenesis of Prunus subhirtella autumno rosa and regeneration of transgenic plants after Agrobacterium-mediated transformation. Plant Cell Rep. 14, 335-40.Google Scholar
  5. Dandekar, A.M., McGranahan, G.H., Vail, P.V., Uratsu, S.L., Leslie, C. and Tebbets, J.S. (1994) Low levels of expression of wild type Bacillus thuringiensis var. kurstaki cryIA(c) sequences in transgenic walnut somatic embryos. Plant Sci. 96, 151-62.Google Scholar
  6. De Bondt, A., Eggermont, K., Penninckx, I., Goderis, I. and Broekaert, W.F. (1996) Agrobacterium-mediated transformation of apple (Malus × domestica Borkh.): an assessment of factors affecting regeneration of transgenic plants. Plant Cell Rep. 15, 549-54.Google Scholar
  7. Dellaporta, S.L., Wood, J. and Hicks, J.B. (1983) A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 4, 19-21.Google Scholar
  8. Durán-Vila, N., Carbonell, E.A., Pérez Boada, S. and Semancik, J.S. (1995) Growth of healthy and viroid-infected tomato cells in vitro. Plant Sci. 105, 111-20.Google Scholar
  9. Durzan, D. (1990) Adult vs. juvenile explants: directed totipotency. In Rodríguez, R., Sánchez-Tamés, R. and Durzan, D.J. eds., Plant Aging. Basic and Applied Approaches, NATO ASI Series. Series A: Life Sciences. Vol. 186. pp. 19-25.Google Scholar
  10. Fillatti, J.J., Kiser, J., Rose, R. and Comai, L. (1987a) Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Bio/Technology 5, 726-30.Google Scholar
  11. Fillatti, J.J., Sellmer, J., McCown, B., Haissig, B. and Comai, L. (1987b) Agrobacterium-mediated transformation and regeneration of Populus. Mol. Gen. Genet. 206, 192-9.Google Scholar
  12. Fitch, M.M.M., Manshardt, R.M., Gonsalves, D. and Slightom, J.L. (1990) Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep. 9, 189-94.Google Scholar
  13. Fitch, M.M.M., Manshardt, R.M., Gonsalves, D., Slightom, J.L. and Sanford, J.C. (1992) Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Bio/Technology 10, 1466-72.Google Scholar
  14. Fitch, M.M.M., Manshardt, R.M., Gonsalves, D. and Slightom, J.L. (1993) Transgenic papaya plants from Agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep. 12, 245-9.Google Scholar
  15. Hidaka, T., Omura, M., Ugaki, M., Tomiyama, M., Kato, A., Ohshima, M. and Motoyoshi, F. (1990) Agrobacterium-mediated transformation and regeneration of Citrus spp. from suspension cells. Japan. J. Breed. 40, 199-207.Google Scholar
  16. Hood, E.E., Gelvin, S.B., Melchers, L.S. and Hoekema, A. (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res. 2, 208-18.Google Scholar
  17. Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eighholtz, D., Rogers, S.G. and Fraley, R.T. (1985) Transferring genes into plants. Science 227, 1229-31.Google Scholar
  18. James, D.J., Passey, A.J., Barbara, D.J. and Bevan, M. (1989) Genetic transformation of apple (Malus pumila Mill.) using a disarmed Ti-binary vector. Plant Cell Rep. 7, 658-61.Google Scholar
  19. James, D.J., Passey, A.J., Baker, S.A. and Wilson, F.M. (1996) Transgenes display stable patterns of expression in apple fruit and mendelian segregation in the progeny. Bio/Technology 14, 56-60.Google Scholar
  20. Janssen, B.J. and Gardner, R.C. (1993) The use of transient GUS expression to develop an Agrobacterium-mediated gene transfer system for kiwifruit. Plant Cell Rep. 13, 28-31.Google Scholar
  21. Jefferson, R.A. (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5, 387-405.Google Scholar
  22. Kaneyoshi, J., Kobayashi, S., Nakamura, Y., Shigemoto, N. and Doi, Y. (1994) A simple and efficient gene transfer system of trifoliate orange. Plant Cell Rep. 13, 541-5.Google Scholar
  23. Kikkert, J.R., Hebert-Soule, D., Wallace, P.G., Striem, M.J. and Reisch, B.I. (1996) Transgenic plantlets of 'Chancellor' grapevine (Vitis sp.) from biolistic transformation of embryogenic cell suspensions. Plant Cell Rep. 15, 311-6.Google Scholar
  24. Krastanova, S., Perrin, M., Barbier, P., Demangeat, G., Cornuet, P., Bardonnet, N., Otten, L., Pinck, L. and Walter, B. (1995) Transformation of grapevine rootstocks with the coat protein gene of grapevine fanleaf nepovirus. Plant Cell Rep. 14, 550-4.Google Scholar
  25. Laimer da Câmara Machado, M., da Câmara Machado, A., Hanzer, V., Weiss, H., Regner, F., Steinkellner, H., Mattanovich, D., Plail, R., Knapp, E., Kalthoff, B. and Katinger, H. (1992) Regeneration of transgenic plants of Prunus armaniaca containing the coat protein gene of plum pox virus. Plant Cell Rep. 11, 25-9.Google Scholar
  26. Le Gall, O., Torregrosa, L., Danglot, Y., Candresse, T. and Bouquet, A. (1994) Agrobacterium-mediated genetic transformation of grapevine somatic embryos and regeneration of transgenic plants expressing the coat protein of grapevine chrome mosaic nepovirus (GCMV). Plant Sci. 102, 161-70.Google Scholar
  27. Maheswaran, G., Welander, M., Hutchinson, J.F., Graham, M.W. and Richards, D. (1992) Transformation of apple rootstock M26 with Agrobacterium tumefaciens. J. Plant Phys. 139, 560-8.Google Scholar
  28. Manders, G., Otoni, W.C., d'Utra Vaz, F.B., Blackhall, N.W., Power, J.B. and Davey, M.R. (1994) Transformation of passionfruit (Passiflora edulis fv flavicarpa Degener.) using Agrobacterium tumefaciens. Plant Cell Rep. 13, 697-702.Google Scholar
  29. Mante, S., Morgens, P.H., Scorza, R., Cordts, J.M. and Callahan, A.M. (1991) Agrobacterium-mediated transformation of plum (Prunus domestica L.) hypocotyl slices and regeneration of transgenic plants. Bio/Technology 9, 853-7.Google Scholar
  30. Martinelli, L. and Mandolino, G. (1994) Genetic transformation and regeneration of transgenic plants in grapevine (Vitis rupestris S.). Theor. Appl. Gen. 88, 621-8.Google Scholar
  31. Mauro, M.C., Toutain, S., Walter, B., Pinck, L., Otten, L., Coutos-Thevenot, P., Deloire, A. and Barbier, P. (1995) High efficiency regeneration of grapevine plants transformed with the GFLV coat protein gene. Plant Sci. 112, 97-106.Google Scholar
  32. McCormick, S., Niedermeyer, J., Fry, J., Barnason, A., Horsch, R. and Fraley, R. (1986) Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep. 5, 81-4.Google Scholar
  33. McGranahan, G.H., Leslie, C.A., Uratsu, S.L. and Dandekar, A.M. (1990) Improved efficiency of the walnut somatic embryo gene transfer system. Plant Cell Rep. 8, 512-6.Google Scholar
  34. McGranahan, G.H., Leslie, C.A., Dandekar, A.M., Uratsu, S.L. and Yates, I.E. (1993) Transformation of pecan and regeneration of transgenic plants. Plant Cell Rep. 12, 634-8.Google Scholar
  35. Moore, G.A., Jacono, C.C., Neidigh, J.L., Lawrence, S.D. and Cline, K. (1992) Agrobacterium-mediated transformation of citrus stem segments and regeneration of transgenic plants. Plant Cell. Rep. 11, 238-42.Google Scholar
  36. Mullins, M.G., Tang, F.C.A. and Facciotti, D. (1990) Agrobacterium-mediated genetic transformation of grapevines: transgenic plants of Vitis rupestris Scheele and buds of Vitis vinifera L. Bio/Technology 8, 1041-5.Google Scholar
  37. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473-9.Google Scholar
  38. Nakano, M., Hoshino, Y. and Mii, M. (1994) Regeneration of transgenic plants of grapevine (Vitis vinifera L.) via Agrobacterium rhizogenes-mediated transformation of embryogenic calli. J. Exp. Bot. 45, 649-56.Google Scholar
  39. Navarro, L. (1990) Shoot-tip grafting in vitro of woody species and its influence on plant age. In Rodríguez, R., Sánchez-Tamés, R. and Durzan, D.J. eds., Plant Aging. Basic and Applied Approaches, NATO ASI Series. Series A: Life Sciences. Vol. 186. pp. 117-23.Google Scholar
  40. Navarro, L. (1992) Citrus shoot-tip grafting in vitro. In Y.P.S. Bajaj ed., Biotechnology in Agriculture and Forestry, Springer-Verlag. Vol. 18. pp. 328-38.Google Scholar
  41. Newell, C.A., Rozman, R., Hinchee, M.A., Lawson, E.C., Haley, L., Sanders, P., Kaniewski, W., Tumer, N.E., Horsch, R.B. and Fraley, R.T. (1991) Agrobacterium-mediated transformation of Solanum tuberosum L. cv. Russet Burbank. Plant Cell Rep. 10, 30-4.Google Scholar
  42. Norelli, J.L., Aldwinckle, H.S., Destéfano-Beltran, L. and Jaynes, J.M. (1994) Transgenic 'Malling 26' apple expressing the attacin E gene has increased resistance to Erwinia amylovora. Euphytica 77, 123-8.Google Scholar
  43. Peña, L., Cervera, M., Juárez, J., Navarro, A., Pina, J.A., Durán-Vila, N. and Navarro, L. (1995a) Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants. Plant Cell Rep. 14, 616-9.Google Scholar
  44. Peña, L., Cervera, M., Juárez, J., Ortega, C., Pina, J.A., Durán-Vila, N. and Navarro, L. (1995b) High efficiency Agrobacterium-mediated transformation and regeneration of citrus. Plant Sci. 104, 183-91.Google Scholar
  45. Perl, A., Lotan, O., Abu-Abied, M. and Holland, D. (1996) Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): The role of antioxidants during grape-Agrobacterium interactions. Nature Biotechnology 14, 624-8.Google Scholar
  46. Rugini, E., Pellegrineschi, A., Mencuccini, M. and Mariotti, D. (1991) Increase of rooting ability in the woody species kiwi (Actinidia deliciosa A. Chev.) by transformation with Agrobacterium rhizogenes rol genes. Plant Cell Rep. 10, 291-5.Google Scholar
  47. Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual, 2nd edition. Cold Spring Habor, NY, USA: Cold Spring Habor Laboratory Press.Google Scholar
  48. Scorza, R., Ravelonandro, M., Callahan, A.M., Cordts, J.M., Fuchs, M., Dunez, J. and Gonsalves, D. (1994) Transgenic plums (Prunus domestica L.) express the plum pox virus coat protein gene. Plant Cell Rep. 14, 18-22.Google Scholar
  49. Scorza, R., Cordts, J.M., Ramming, D.W. and Emershad, R.L. (1995a) Transformation of grape (Vitis vinifera L.) zygotic-derived somatic embryos and regeneration of transgenic plants. Plant Cell Rep. 14, 589-92.Google Scholar
  50. Scorza, R., Levy, L., Damsteegt, V., Yepes, L.M., Cordts, J., Hadidi, A., Slightom, J. and Gonsalves, D. (1995b) Transformation of plum with the papaya ringspot virus coat protein gene and reaction of transgenic plants to plum pox virus. J. Am. Soc. Hort. Sci. 120, 943-52.Google Scholar
  51. Smigocki, A.C. and Hammerschlag, F.A. (1991) Regeneration of plants from peach embryo cells infected with a shooty mutant strain of Agrobacterium. J. Am. Soc. Hort. Sci. 116, 1092-7.Google Scholar
  52. Soost, R.K. and Cameron, J.W. (1975) Citrus. In Janick, J. and Moore, J.N. eds., Advances in Fruit Breeding, West Lafayetete, IN, USA: Purdue University, pp. 507-40.Google Scholar
  53. Stachel, S.E., Messens, E., van Montagu, M. and Zambryski, P. (1985) Identification of the signals molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318, 624-9.Google Scholar
  54. Uematsu, C., Murase, M., Ichikawa, H. and Imamura, J. (1991) Agrobacterium-mediated transformation and regeneration of kiwi fruit. Plant Cell Rep. 10, 286-90.Google Scholar
  55. Vancanneyt, G., Schmidt, R., O'Connor-Sánchez, A., Willmitzer, L. and Rocha-Sosa, M. (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol. Gen. Genet. 220, 245-50.Google Scholar
  56. Vardi, A., Bleichman, S. and Aviv, D. (1990) Genetic transformation of citrus protoplasts and regeneration of transgenic plants. Plant Sci. 69, 199-206.Google Scholar
  57. White, P.R. (1951) Nutritional requirements of isolated plant tissues and organs. Ann. Rev. Plant Physiol. 2, 231.Google Scholar
  58. Yao, J.L., Cohen, D., Atkinson, R., Richardson, K. and Morris, B. (1995) Regeneration of transgenic plants from the commercial apple cultivar Royal Gala. Plant Cell Rep. 14, 407-12.Google Scholar

Copyright information

© Chapman and Hall 1998

Authors and Affiliations

  • Magdalena Cervera
    • 1
  • Jose Juarez
    • 1
  • Antonio Navarro
    • 1
  • Jose A. Pina
    • 1
  • Nuria Duran-Vila
    • 1
  • Luis Navarro
    • 1
  • Leandro Pena
    • 1
  1. 1.Dpto Proteccion Vegetal y BiotecnologiaInstituto Valenciano de Investigaciones Agrarias (IVIA)Moncada ValenciaSpain

Personalised recommendations