World Journal of Microbiology and Biotechnology

, Volume 14, Issue 5, pp 635–647 | Cite as

Review: Organophosphonates: occurrence, synthesis and biodegradation by microorganisms

  • Nigel G. Ternan
  • John W. Mc Grath
  • Geoffrey Mc Mullan
  • John P. Quinn
Article

Abstract

The organophosphonates are biogenic and xenobiotic compounds characterized by the presence of a stable carbon to phosphorus (C-P) bond. The C-P bond imparts upon these molecules a relative resistance to (bio)degradation and fears have been expressed over their environmental recalcitrance and possible ecotoxicity, as more than 20×103 tonnes of these compounds enter the environment annually in the U.S.A. and western Europe alone (Egli, 1988). Biodegradation of organophosphonates is generally accepted to be dependent upon the phosphate status of the cell, with biodegradation occurring only under conditions of phosphate limitation. In recent years, however, several novel bacteria capable of completely mineralizing both natural and man-made organophosphonates have been isolated. These organisms represent a departure, both at a physiological and genetic level, from the accepted consensus that organophosphonates are utilized only phosphorus sources. This review covers all aspects of our knowledge of organophosphonate metabolism over the last 50 years, concentrating on the advances made in the last 10 years.

Biodegradation C-P lyase Organophosphonates pho regulon xenobiotic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avila, L.Z. & Frost, J.W. 1989 Phosphonium ion fragmentations relevant to organophosphonate biodegradation. Journal of the American Chemical Society 111, 8969–8970.Google Scholar
  2. Avila, L.Z., Loo, S.H. & Frost, J.W. 1987 Chemical and mutagenic analysis of aminoethylphosphonate biodegradation. Journal of the American Chemical Society 109, 6758–6764.Google Scholar
  3. Balthazor, T.M. & Hallas, L.E. 1986 Glyphosate-degrading microorganisms from industrial activated sludge. Applied and Environmental Microbiology 51, 432–434.Google Scholar
  4. Bayer, E., Gugel, K.H., Hagele, K., Hagenmaier, H., Jessipow, S., Konig, W.A. & Zahner, Z. 1972 Phosphinothricin and phosphinothricyl-alanyl-alanine. Helvetica Chimica Acta 55, 224–239.Google Scholar
  5. Black, S., Morel, B. & Zapf, P. 1991 Verification of the chemical convention. Nature 351, 515–516.Google Scholar
  6. Blackburn, G.M. 1981 Phosphonates as analogues of biological phosphates. Chemistry and Industry 7, 134–138.Google Scholar
  7. Bowman, E.D., Mc Queeney, M.S., Barry, R.J. & Dunaway-Mariano, D. 1988 Catalysis and thermodynamics of the phosphoenolpyruvate/phosphonopyruvate rearrangement. Entry into the phosphate class of naturally occurring phosphate compounds. Journal of the American Chemical Society 110, 5575–5576.Google Scholar
  8. Bowman, E.D., Mc Queeney, M.S., Barry, R.J. & Dunaway-Mariano D. 1990 Purification and Characterisation of the Tetrahymena pyriformis P-C bond forming enzyme phosphoenolpyruvate phosphomutase. Biochemistry 29, 7059–7063.Google Scholar
  9. Brzoska, P., Rimmele, M., Brzostek, K. & Boos, W. 1994 The pho regulon-dependent Ugp uptake system for glycerol-3-phosphate in Escherichia coli is trans inhibited by Pi. Journal of Bacteriology 176, 1, 15-20.Google Scholar
  10. Bujacz, B., Wieczorek P., Krzysko-Lupicka T., Golab, Z., Lejczak, B. & Kavfarski, P. 1995 Organophosphonate utilization by the wild type strain of Penicillium notatum. Applied and Environmental Microbiology 61, 8, 2905-2910.Google Scholar
  11. Carson, D.B., Heitkamp, M.A. & Hallas, L.E. 1997 Biodegradation of N-phosphonomethyliminodiacetic acid by microorganisms from industrial activated sludge. Canadian Journal of Microbiology 43, 97–101.Google Scholar
  12. Cassaigne, A., Lacoste, A.-M. & Neuzil, E. 1971 Transamination non-enzymatique des acides aminoalkylphosphoniques par l' acide gloxylique. Biochimia et Biophysica Acta 252, 506–515.Google Scholar
  13. Chen, C.-M., Ye, Q.-Z., Zhu, Z., Wanner, B.L. & Walsh, C.T. 1990 Molecular biology of carbon-phosphorus bond cleavage. Cloning and sequencing of the phn (psiD) genes involved in alkylphosphonate uptake and C-P lyase activity in Escherichia coli B. Journal of Biological Chemistry 265, 4461–4471.Google Scholar
  14. Cook, A.M. 1988 Combined carbon and phosphorus or carbon and sulphur or carbon and sulphur substrates. In Mixed and Multiple Feedstocks, ed Hamer, G., Egli, T. & Snozzi, M. pp. 71–83. EFB Konstanz. ISBN 3-89191-326-5.Google Scholar
  15. Cook, A.M., Daughton, C.G. & Alexander, M. 1978 Phosphonate utilization by bacteria. Journal of Bacteriology 133, 85–90.Google Scholar
  16. Cordeiro, M.L., Pompliano, D.L. & Frost, J.W. 1986 Degradation and detoxification of organophosphonates: cleavage of the carbon to phosphorus bond. Journal of the American Chemical Society 108, 332–334.Google Scholar
  17. Daughton, C.G., Cook, A.M. & Alexander, M. 1979a Bacterial conversion of alkylphosphonates to natural products via carbon-phosphorus bond cleavage. Journal of Agriculture and Food Chemistry 27, 6, 1375-1382.Google Scholar
  18. Daughton, C.G., Cook, A.M. & Alexander, M. 1979b Biodegradation of phosphonate toxicants yields methane or ethane on cleavage of the C-P bond. FEMS Microbiology Letters 5, 91–93.Google Scholar
  19. Dick, R.E. & Quinn, J.P. 1995a Control of glyphosate uptake and metabolism in Pseudomonas sp. 4ASW. FEMS Microbiology Letters 134, 177–182.Google Scholar
  20. Dick, R.E. & Quinn, J.P. 1995b Glyphosate-degrading isolates from environmental samples: occurrence and pathways of degradation. Applied Microbiology and Biotechnology 43, 545–550.Google Scholar
  21. Drake Jr., G.L. & Calamari Jr., T.A. 1983 Industrial uses of phosphonates. In The role of phosphonates in living systems, ed Hilderbrand, R.L. pp. 171–194. C.R.C. Press, Inc., Boca Raton, Florida. ISBN 0-84935-724-1.Google Scholar
  22. Dumora, C., Lacoste, A.-M. & Cassaigne, A. 1983 Purification and properties of 2-aminoethylphosphonate: pyruvate aminotransferase from Pseudomonas aeruginosa. European Journal of Biochemistry 133, 119–125.Google Scholar
  23. Dumora, C., Lacoste, A.-M. & Cassaigne, A. 1989 Phosphonoacetaldehyde hydrolase from Pseudomonas aeruginosa, purification properties and comparison with Bacillus cereus enzyme. Biochimica et Biophysica Acta 997, 193–198.Google Scholar
  24. Dumora C., Marche M., Doignon, F., Aigle, M., Cassaigne, A. & Crouzet, M. 1997 First characterization of the phosphonoacetaldehyde hydrolase gene of Pseudomonas aeruginosa. Gene 197, 405–412.Google Scholar
  25. Egli, T. 1988 (An)aerobic breakdown of chelating agents used in household detergents Microbiological Sciences 5, 36–41.Google Scholar
  26. Engel, R. 1983 Phosphonic acids and phosphonates as antimetabolites. In The Role of Phosphonates in Living Systems, ed Hilderbrand, R.L. pp. 97–138. C.R.C. Press, Inc., Boca Raton, Florida.Google Scholar
  27. Fischer, R.S., Berry, C.G., Gaines, C.G. & Jenson, R.A. 1986 Comparative action of glyphosate as a trigger of energy drain in eubacteria. Journal of Bacteriology 168, 1147–1154.Google Scholar
  28. Francis, M.D. & Martodam, R.R. 1983 Chemical, biochemical and medicinal properties of the diphosphonates. In The Role of Phosphonates in Living Systems, ed Hilderbrand, R.L. pp. 55–87 C.R.C Press, Inc., Boca Ration, Florida. ISBN 0-84935-724-1.Google Scholar
  29. Freedman, L.D. & Doak, G.O. 1957 The preparation and properties of phosphonic acids. Chemical Reviews 57, 479–523.Google Scholar
  30. Frost, J.W., Loo, M.L., Cordeiro, M.L. & Li, D. 1987 Radical-based dephosphorylation and organophosphonate biodegradation. Journal of the American Chemical Society 109, 2166–2171.Google Scholar
  31. Gledhill, W.E. & Feijtel, T. 1992 Environmental properties and safety assessment of organic phosphates used for detergent and water treatment applications. In The Handbook of Environmental Chemistry, ed Hutzinger, O. pp. 261–285. Volume 3, Part F. Springer Verlag Berlin Heidelberg. ISBN 3-540-53797-5.Google Scholar
  32. Hallas, L.E.., Hahn, M.H. & Korndorfer, C. 1988 Characterization of microbial traits associated with glyphosate degradation in industrial activated sludge. Journal of Industrial Microbiology 3, 377–385.Google Scholar
  33. Harkness, D.R. 1966 Bacterial growth on aminoalkylphosphonic acids. Journals of Bacteriology 92, 623–627.Google Scholar
  34. Hendlin, D., Stapley, E.O., Jackson, M., Wallick, H., Miller, A.K., Wolf, F.J., Miller, T.W., Chaiet, L., Kanan, F.M., Foltz, E.L., Woodruff, H.B., Mata, J., Hernandez, S. & Mochales, S. 1969 Phosphonomycin, a new antibiotic produced by strains of Streptomyces. Science 166, 122–123.Google Scholar
  35. Hidaka, T., Mori, M., Imai, S., Hara, K., Nagoka, K. & Seto, H. 1989 Studies on the biosynthesis of bialaphos (SF-1293).9. Biochemical mechanism of C-P bond formation in bialaphos: discovery of phosphoenolpyruvate phosphomutase which catalyses the formation of phosphonopyruvate from phosphoenolpyruvate. Journal of Antibiotics (Tokyo) 42, 491–494.Google Scholar
  36. Hilderbrand, R.L. 1983 The effects of phosphonates on living systems. In The Role of Phosphonates in Living Systems. ed Hilderbrand, R.L. pp. 139–170. C.R.C. Press, Inc., Boca Raton, Florida. ISBN 0-84935-724-1.Google Scholar
  37. Hilderbrand, R.L. & Henderson, T.G. 1983 Phosphonic acids in nature. In The Role of Phosphonates in Living Systems. ed Hilderbrand, R.L. pp. 5–30. C.R.C. Press, Inc., Boca Raton, Florida. ISBN 0-84935-724-1.Google Scholar
  38. Horiguchi, M. 1972 Biosynthesis of 2-aminoethylphosphonic acid in cell free preparations from Tetrahymena. Biochimica et Biophysica Acta 261, 102–105.Google Scholar
  39. Horiguchi, M. 1984 Occurrence, identification and properties of phosphonic and phosphinic acids. pp 24–52. In The Biochemistry of Natural C-P Compounds, ed Hori, T., Horiguchi, M. & Hayshi, A. Maruzen, Kyoto, Japan.Google Scholar
  40. Horiguchi, M. & Kandatsu, M. 1959 Isolation of 2-aminoethane phosphonic acid from rumen protozoa. Nature 184, 901–902.Google Scholar
  41. Horiguchi, M. & Kandatsu, M. 1964 Polymorphism of ciliatine (2-aminoethylphosphonic acid). Agricultural and Biological Chemistry (Tokyo) 28, 408–410.Google Scholar
  42. Imai, S., Seto, H., Sasaki, T., Tsuruoka, T., Ogawa, H., Satoh, A., Inouye, S., Niida, T. & Otake, N. 1984 Studies on the synthesis of bialaphos (SF-1293). 4. Production of phosphonic acid derivatives, 2-hydroxyethylphosphonic acid, hydroxymethylphosphonic acid and phosphonoformic acid by blocked mutants of Streptomyces hygroscopicus SF-1293 and their roles in the biosynthesis of bialaphos. Journal of Antibiotics 37, 1505–1508.Google Scholar
  43. Jacob, G.S., Garbow, J., Hallas, L.E., Kishore, G.M. & Schaefer, J. 1988. Metabolism of glyphosate in Pseudomonas sp. strain LBr. Applied and Environmental Microbiology 54, 2953–2958.Google Scholar
  44. Jiang, W., Metcalf, W.W., Lee, K.-S. & Wanner, B.L. 1995 Molecular cloning of the genes for phosphonate breakdown by the phosphonatase pathway of Salmonella typhimurium LT2. Journal of Bacteriology 177, 22, 6411-6421.Google Scholar
  45. Kertesz, M., Cook, A.M. & Leisinger, T. 1994 Microbial metabolism of sulfur and phosphorus-containing xenobiotics. FEMS Microbiology Reviews 15, 195–215.Google Scholar
  46. Kertesz, M., Elgorriaga, A. & Amrhein, N. 1991 Evidence for two distinct phosphonate degrading enzymes (C-P lyases) in Arthrobacter sp. GLP-1. Biodegradation 2, 53–59.Google Scholar
  47. Kim, S.K., Makino, K., Amemura, M., Shingawa, H. & Makata, A. 1993 Molecular analysis of the phoH gene, belonging to the phosphate regulon in Escherichia coli. Journal of Bacteriology 175, 1316–1324.Google Scholar
  48. Kimura, T., Nakamura, K. & Takahashi, E. 1995 Phosphonothrixin, a novel herbicidal antibiotic produced by Saccharothrix sp. ST-888: 2. Structure determination. Journal of Antibiotics 48, 1130–1133.Google Scholar
  49. Kishore, G.H. & Barry, G. 1992 Glyphosate tolerant plants. International patent PCT/US91/04514.Google Scholar
  50. Kishore, G.H. & Jacob, G.S. 1987 Degradation of glyphosate by Pseudomonas sp. PG2982 via a sarcosine intermediate. Journal of Biological Chemistry 262, 12164–12168.Google Scholar
  51. Kitteredge, J.S., Roberts, E. & Simonsen, D.G. 1962 Occurrence of free 2AEP in the sea anemone, Anthopleura elegantissima. Biochemistry 1, 624–628.Google Scholar
  52. Krzysko-Lupicka, T., Strof, W., Kubs, K., Skorupa, M., Wieczorek, P., Lejczak, B. & Kafarski, P. 1997 The ability of soil-borne fungi to degrade organophosphonate carbon-to-phosphorus bonds. Applied Microbiology and Biotechnology 48, 549–552.Google Scholar
  53. Kulakova, A.N., Kulakov, L.A. & Quinn, J.P. 1997 Cloning of the phosphonoacetate hydrolase gene from Pseudomonas fluorescens 23F encoding a new type of carbon-phosphorus bond cleaving enzyme and its expression in Escherichia coli and Pseudomonas putida. Gene 195, 49–53.Google Scholar
  54. Kuzuyama, T., Hidaka, T., Imai, S. & Seto, H. 1992 Studies on the biosynthesis of fosfomycin. 4. The biosynthetic origin of the methyl group of fosfomycin. Journal of Antibiotics 45, 1812–1814.Google Scholar
  55. Lacoste, A.-M. & Neuzil, E. 1969 Transamination de l'acide amino-2-ethylphosphonique par Pseudomonas aeruginosa. Comptes Rendus de Seances. Academie des Sciences. Serie D. Sciences Naturelles (France) 269, 254–257.Google Scholar
  56. Lacoste, A.-M., Cassaigne, A., Tamari, M. & Neuzil, E. 1976 Transport de l'acide amino-2-ethylphosphonique chez Pseudomonas aeruginosa. Biochimie (Paris) 58, 703–712.Google Scholar
  57. Lacoste, A.-M., Dumore, C. & Cassaigne, A. 1989 Cleavage of the carbon to phosphorus bond of organophosphonates by bacterial systems. Biochemistry (Life Sci. Adv.) 8, 97–111.Google Scholar
  58. La Nauze, J.M., Coggins, J.R. & Dixon, H.B.F. 1977 Aldolase-like imine formation in the mechanism of action of phosphonoacetaldehyde hydrolase. Biochemical Journal 165, 409–411.Google Scholar
  59. La Nauze, J.M. & Rosenberg, H. 1968 The identification of 2-PAA as an intermediate in the degradation of 2AEP by Bacillus cereus. Biochimica et Biophysica Acta 165, 438–447.Google Scholar
  60. La Nauze, J.M., Rosenberg, H. & Shaw, D.C. 1970 The enzymatic cleavage of the carbon-phosphorus bond: purification and properties of phosphonatase. Biochimica et Biophysica Acta 212, 332–350.Google Scholar
  61. Lee, K.S., Metcalf, W.W. & Wanner, B.L. 1992 Evidence for two phosphonate degradative pathways in Enterobacter aerogenes. Journal of Bacteriology 174, 2501–2510.Google Scholar
  62. Mc Auliffe, K.S., Hallas, L.E. & Kulpa, C.F. 1990 Glyphosate degradation by Agrobacterium radiobacter isolated from activated sludge. Journal of Industrial Microbiology 6, 219–221.Google Scholar
  63. Mc Grath, J.W. 1995 Biodegradation of organophosphonates by environmental bacteria. Ph.D. Thesis. The Queen's University of Belfast, Northern Ireland.Google Scholar
  64. Mc Grath, J.W., Ternan, N.G & Quinn, J.P. 1997 Utilisation of organophosphonates by environmental microorganisms. Letters in Applied Microbiology 24, 69–73.Google Scholar
  65. Mc Grath, J.W., Wisdom, G.B., Mc Mullan, G., Larkin, M.J. & Quinn, J.P. 1995 The purification and properties of phosphonoacetate hydrolase, a novel carbon-phosphorus bond-cleavage enzyme from Pseudomonas fluorescens 23F. European Journal of Biochemistry 234, 225–230.Google Scholar
  66. Mc Mullan, G. 1992 The biodegradation of organophosphonates by environmental bacteria. Ph.D. Thesis. The Queen's University of Belfast.Google Scholar
  67. Mc Mullan, G., Watkins, R., Harper, D.B. & Quinn, J.P. 1991 Carbon phosphorus bond cleavage activity in cell free extract of Enterobacter aerogenes ATCC 15038 and Pseudomonas sp. 4ASW. Biochemistry International 25, 271–279.Google Scholar
  68. Mc Mullan, G., Harrington, F. & Quinn, J.P. 1992 Metabolism of phosphonoacetate as the sole carbon and phosphorus source by an environmental bacterial isolate. Applied and Environmental Microbiology 58, 1364–1360.Google Scholar
  69. Mc Mullan, G. & Quinn, J.P. 1992 Detection of a novel carbon phosphorus bond cleavage activity in cell free extracts of an environmental Pseudomonas fluorescens isolate. Biochemical and Biophysical Research Communications 184, 1022–1027.Google Scholar
  70. Mc Mullan, G. & Quinn, J.P. 1994 The utilization of aminoalkylphosphonic acids as sole nitrogen sources by an environmental bacterial isolate. Letters in Applied Microbiology 17, 135–138.Google Scholar
  71. Mc Mullan, G. & Quinn, J.P. 1994 In vitro characterisation of a phosphate starvation independent C-P bond cleavage activity in Pseudomonas fluorescens 23F. Journal of Bacteriology 176, 2, 320-324Google Scholar
  72. Makino, K., Kim, S.K., Shingawa, H., Amemura, M. & Nakata, A. 1991 Molecular analysis of the cryptic and functional phn operons for phosphonate use in E. coli K12. Journal of Bacteriology 173, 2665–2672Google Scholar
  73. Makino, K., Amemura, M., Kim, S.K., Nakata, A. & Shinagawa, H. 1994 Mechanism of Transcriptional activation of the Phosphate Regulon in Escherichia coli. In Phosphate in microorganisms, ed Torriani-Gorini, A., Yagil, E. & Silver, S. pp. 5–11. ASM Press, Washington, D.C. ISBN 5-55581-080-2.Google Scholar
  74. Malasterez, P., Wieczorek, Z. & Kochman, M. 1965 Utilisation of carbon-bound phosphorus by microorganisms. Acta Biochimica Polonica 12, 2, 151-156.Google Scholar
  75. Malik, J., Barry, G. & Kishore, G.M. 1989 The herbicide glyphosate. Biofactors 2, 17–25.Google Scholar
  76. Metcalf, W.W. & Wanner, B.L. 1991 Involvement of the E. coli phn (psi D) gene cluster in assimilation of phosphorus in the form of phosphonates, phosphite, phosphate esters and phosphate. Journal of Bacteriology 173, 587–600.Google Scholar
  77. Metcalf, W.W. & Wanner, B.L. 1993a Mutational analysis of an Escherichia coli fourteen-gene operon for phosphonate degradation using TnphoA' elements. Journal of Bacteriology 175, 3430–3442.Google Scholar
  78. Metcalf, W.W. & Wanner, B.L. 1993b Evidence for a fourteen-gene phnC-phnP locus for phosphonate metabolism in Escherichia coli. Gene 129, 27–32.Google Scholar
  79. Metcalf, W.W., Steed, P.M. & Wanner, B.L. 1990 Identification of phosphate-starvation-inducible genes in Escherichia coli K-12 by DNA sequence analysis of psiD::lacZ (Mu d1) transcriptional fusions. Journal of Bacteriology 173, 587–600.Google Scholar
  80. Moore, J.K., Braymer, H.D. & Larson, A.D. 1983 Isolation of a Pseudomonas sp. which utilizes the phosphonate herbicide glyphosate. Applied and Environmental Microbiology 46, 1, 316-320.Google Scholar
  81. Murata, K., Higaki, N. & Kimura, A. 1988 Detection of carbon-phosphorus lyase activity in cell free extracts of Enterobacter aerogenes. Biochemical and Biophysical Research Communications 157, 190–195.Google Scholar
  82. Murata, K., Higaki, N. & Kimura, A. 1989a Carbon-phosphorus hydrolase, some properties of the enzyme in cell extracts of Enterobacter aerogenes. Agricultural and Biological Chemistry (Tokyo) 53, 1419–1420.Google Scholar
  83. Murata, K., Higaki, N. & Kimura, A. 1989b Carbon-phosphorus hydrolase, functional associations of two different proteins for the enzyme activity in Enterobacter aerogenes. Agricultural and Biological Chemistry (Tokyo) 53, 1225–1229.Google Scholar
  84. Murata, K., Higaki, N. & Kimura, A. 1989c A microbial carbon-phosphorus bond cleavage enzyme requires two protein components for activity. Journal of Bacteriology 171, 4504–4506.Google Scholar
  85. Nakashita, H., Shimazu, A., Hidaka, T. & Seto, H. 1992 Purification and characterisation of phosphoenolpyruvate phosphomutase from Pseudomonas gladioli B-1. Journal of Bacteriology 174, 21, 6857-6861.Google Scholar
  86. Nakashita, H., Watanabe, K., Hara, O., Hidaka, T. & Seto, H. 1997 Studies on the biosynthesis of bialaphos. Biochemical mechanism of C-P bond formation: discovery of phosphonopyruvate decarboxylase which catalyses the formation of phosphonoacetaldehyde from phosphonopyruvate. Journal of Antibiotics 50, 212–219.Google Scholar
  87. Nomura, N.S. & Hilton, H.W. 1977 The adsorption and degradation of glyphosate in five Hawaiian sugarcane soils. Weed Research 17, 113–121.Google Scholar
  88. Olsen, D.B., Hepburn, T.W., Moos, M., Mariano, P.S. & Dunaway-Mariano, D. 1988 Investigation of the Bacillus cereus phosphonoacetaldehyde hydrolase. Evidence for a Schiff-base mechanism and sequence analysis of an active-site peptide containing the catalytic lysine residue. Biochemistry 27, 2229–2234.Google Scholar
  89. Olsen, D.B., Hepburn, T.W., Lee, S., Martin, B.M., Mariano, P.S. & Dunaway-Mariano, D. 1992 Investigation of the substrate binding and catalytic groups of the P-C bond cleaving enzyme, phosphonoacetaldehyde hydrolase. Archives of Biochemistry and Biophysics 296, 144–151.Google Scholar
  90. Overduin, P., Boos, W. & Tommassen, J. 1988 Nucleotide sequence of the ugp genes of Escherichia coli K-12: homology to the maltose system. Molecular Microbiology 2, 767–775.Google Scholar
  91. Park, B.K., Hirota, A. & Sakai, H. 1976 2-amino-5-phosphono-3-pentenoic acid, a new amino acid from N-1409 substance, an antagonist of threonine. Agricultural and Biological Chemistry. (Tokyo) 40, 1905.Google Scholar
  92. Pipke, R. & Amrhein, N. 1988 Carbon-phosphorus lyase activity in permeabilized cells of Arthrobacter sp. GLP-1. FEBS Microbiology Letters 236, 135–138.Google Scholar
  93. Pipke, R., Amrhein, N., Jacob, G.S. & Kishore, G.M. 1987 Metabolism of glyphosate by an Arthrobacter sp. GLP-1. European Journal of Biochemistry 165, 267–273.Google Scholar
  94. Pollack, S.J., Freeman, S., Pompliano, D.L. & Knowles, J.R. 1992 Cloning, overexpression and mechanistic studies of carboxyphosphonoenolpyruvate mutase from Streptomyces hygroscopicus. European Journal of Biochemistry 209, 735–743.Google Scholar
  95. Quinn, J.P., Heron, J.K. & Mc Mullan, G. 1993 Glufosinate tolerance and utilisation by soil and aquatic bacteria. Biology and Environment 93B, 3, 181-186.Google Scholar
  96. Quinn, J.P., Peden, J.M.M. & Dick, R.E. 1988 Glyphosate tolerance and utilization by the microflora of soils treated with the herbicide. Applied Microbiology and Biotechnology 29, 511–516.Google Scholar
  97. Quinn, J.P., Peden, J.M.M. & Dick, R.E. 1989 Carbon-phosphorus bond cleavage by gram positive soil bacteria. Applied Microbiology and Biotechnology 31, 283–287.Google Scholar
  98. Rosenberg, H. & La Nauze, J.M. 1967 The metabolism of phosphonates by microorganisms. The transport of 2AEP in Bacillus cereus. Biochimica et Biophysica Acta 141, 79–90.Google Scholar
  99. Rueppel, M.L., Brightwell, B.B., Schaefer, J. & Marvel, J.T. 1977 Metabolism and degradation of glyphosate in soil and water. Journal of Agricultural and Food Chemistry 25, 517–528.Google Scholar
  100. Schowanek, D & Verstraete, W. 1990 Phosphonate utilization by bacterial cultures and enrichments from environmental samples. Applied and Environmental Microbiology 56, 2501–2510.Google Scholar
  101. Schulz, A., Taggeselle, P., Tripier, D. & Bartsch, K. 1990 Stereospecific production of the herbicide phosphinothricin (glufosinate) by transamination, Isolation and characterisation of a phosphinothricin-specific transaminase from E. coli. Applied and Environmental Microbiology 56, 1–6.Google Scholar
  102. Seidel, H.M., Freeman, S., Seto, H. & Knowles, J.R. 1988 Phosphonate biosynthesis: isolation of the enzyme responsible for the formation of the C-P bond Nature 335, 457–458.Google Scholar
  103. Shames, S.L., Wackett, L.P., LaBarge, S., Kuczkowski, R.L. & Walsh, C.T. 1987 Fragmentative and stereochemical isomerisation probes for homolytic carbon to phosphorus bond scission catalysed by bacterial carbon-phosphorus lyase. Bioorganic Chemistry 15, 366–373.Google Scholar
  104. Shinabarger, D.E. & Braymer, H.D. 1986 Glyphosate catabolism by Pseudomonas sp. strain PG2982. Journal of Bacteriology 168, 702–707.Google Scholar
  105. Sobera, M., Wieczoreck, P., Lejczak, B. & Kafarski, P. 1997 Organophosphonate utilization by the wild type strain of Cladosporium resinae. Toxicological and Environmental Chemistry 61, 229–235.Google Scholar
  106. Sprankle, P., Meggitt, W.F. & Penner, D. 1975 Adsorption, mobility, and microbial degradation of glyphosate in the soil. Weed Science 23, 229–234.Google Scholar
  107. Takada, T. & Horiguchi, M. 1988 Biosynthesis of 3-phosphonopyruvic acid in cell-free preparations of Tetrahymena pyriformis GL. Biochimica et Biophysica Acta 964, 113–115.Google Scholar
  108. Takahashi, E., Kimura, T., Nakamura, K., Arahira, M. & Iida, M. 1995 Phosphonothrixin, a novel herbicidal antibiotic produced by Saccharothrix sp. ST-888: 1. Taxonomy, fermentation, isolation and biological properties. Journal of Antibiotics 48, 1124–1129.Google Scholar
  109. Tebbe, C.C. & Reber, H.H. 1988 Utilization of the herbicide phosphinothricin as a nitrogen source by soil bacteria. Applied Microbiology and Biotechnology 29, 103–105.Google Scholar
  110. Ternan, N.G. 1997 Biodegradation of aminoalkylphosphonates by environmental bacteria. Ph.D. Thesis, The Queen's University of Belfast, Northern Ireland.Google Scholar
  111. Torriani-Gorini, A. 1994 Regulation of phosphate metabolism and transport. In Phosphate in microorganisms, ed Torriani-Gorini, A., Yagil, E. & Silver, S. pp. 1–3. ASM Press, Washington, D.C. ISBN 5-55581-080-2.Google Scholar
  112. Torstensson, N.T.L. & Aamisepp, A. 1977 Detoxification of glyphosate in soil. Weed Research 17, 209–212.Google Scholar
  113. Wackett, L.P., Shames, S.L., Venditti, C.P. & Walsh, C.T. 1987a Bacterial carbon-phosphorus lyase: Products, rates, and regulation of phosphonic and phosphinic acid metabolism. Journal of Bacteriology 169, 710–717.Google Scholar
  114. Wackett, L.P., Wanner, B.L., Venditti, C.P. & Walsh, C.T. 1987b Involvement of the phosphate regulon and the psiD locus in carbon-phosphorus lyase activity of E. coli K-12. Journal of Bacteriology 169, 1753–1756.Google Scholar
  115. Wanner, B.L. 1983 Gene regulation by phosphate in enteric bacteria. Journal of Cellular Biochemistry 51, 47–54.Google Scholar
  116. Wanner, B.L. 1987 Phosphate regulation of gene expression in Escherichia coli. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, ed Neidhardt, F.C., Ingraham, J.L., Low, K.B., Magasanik, B., Schaechter, M. & Umbarger, H.E. pp. 1326–1333. Vol 2, American Society for Microbiology, Washington, D.C. ISBN 0-91482-689-1.Google Scholar
  117. Wanner, B.L. 1990 Phosphorus assimilation and its control of gene expression in E. coli. In The Molecular Basis of Bacterial Metabolism, ed Hauska, G. & Thauer, R. pp. 152–163. Springer-Verlag Berlin Heidelberg. ISBN 3-540-52996.Google Scholar
  118. Wanner, B.L. 1992 Is cross regulation by phosphorylation of two-component response regulator proteins important in bacteria? Journal of Bacteriology 174, 2053–2058.Google Scholar
  119. Wanner, B.L. 1994a Multiple controls of the Escherichia coli Pho regulon by the Pi sensor PhoR, the Catabolite regulatory Sensor CreC, and Acetyl Phosphate. In Phosphate in microorganisms, ed Torriani-Gorini, A., Yagil, E. & Silver, S. pp. 13–21. ASM Press, Washington, D.C. ISBN 5-55581-080-2.Google Scholar
  120. Wanner, B.L. 1994b Phosphate regulated genes for the utilization of phosphonates in members of the family Enterobacteriaceae. In Phosphate in microorganisms, ed Torriani-Gorini, A., Yagil, E. & Silver, S. pp. 215–221. ASM Press, Washington, D.C. ISBN 5-55581-080-2.Google Scholar
  121. Wanner, B.L. & Boline, J.A. 1990 Mapping and molecular cloning of the phn (psi D) locus for phosphonate utilization in E. coli. Journal of Bacteriology 172, 1186–1196.Google Scholar
  122. Wanner, B.L. & Latterell, P. 1980 Mutants affected in alkaline phosphatase expression: evidence for multiple positive regulators of the phosphate regulon in Escherichia coli. Genetics 96, 242–266.Google Scholar
  123. Wanner, B.L. & Metcalf, W.W. 1992 Molecular genetic studies of a 10.9-kb operon in E. coli for phosphonate uptake and biodegradation. FEMS Microbiology Letters 100, 133–140.Google Scholar
  124. Warren, W.A. 1968 Biosynthesis of phosphonic acids in Tetrahymena. Biochimica et Biophysica Acta 156, 340–346.Google Scholar
  125. Zboinska, E., Maliszewska, I., Lejczak, B. & Kafarski, P. 1992 Degradation of organophosphonates by Penicillium citrinum. Letters in Applied Microbiology 15, 269–272.Google Scholar
  126. Zeleznick, L.D., Myers, T.C. & Titchener, E.B. 1963 Growth of E. coli on methyl-and ethyl-phosphonic acids. Biochimica et Biophysica Acta 78, 547–550.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Nigel G. Ternan
    • 1
  • John W. Mc Grath
    • 1
  • Geoffrey Mc Mullan
    • 1
  • John P. Quinn
    • 1
  1. 1.The School of Applied Biological and Chemical SciencesUniversity of Ulster, NIreland

Personalised recommendations