Reviews in Fish Biology and Fisheries

, Volume 8, Issue 4, pp 373–408 | Cite as

Fish Brains: Evolution and Anvironmental Relationships

  • K. Kotrschal
  • M.J. Van Staaden
  • R. Huber
Article

Abstract

Fish brains and sensory organs may vary greatly between species. With an estimated total of 25 000 species, fish represent the largest radiation of vertebrates. From the agnathans to the teleosts, they span an enormous taxonomic range and occupy virtually all aquatic habitats. This diversity offers ample opportunity to relate ecology with brains and sensory systems. In a broadly comparative approach emphasizing teleosts, we surveyed ‘classical’ and more recent contributions on fish brains in search of evolutionary and ecological conditions of central nervous system diversification. By qualitatively and quantitatively comparing closely related species from different habitats, particularly cyprinids and African cichlids, we scanned for patterns of divergence. We examined convergence by comparing distantly related species from similar habitats, intertidal and deep-sea. In particular, we asked how habitats relate to the relative importance of different sensory faculties. Most fishes are predominantly visually orientated. In addition, lateral line and hearing are highly developed in epi- and mesopelagic species as well as in the Antarctic notothenoids. In bathypelagics, brain size and the lobes for vision and taste are greatly reduced. Towards shallow water and deep-sea benthic habitats, chemosenses increase in importance and vision may be reduced, particularly in turbid environments. Shallow tropical marine and freshwater reefs (African lakes) enhance visual predominance and appear to exert a considerable selection pressure towards increased size of the (non-olfactory)telencephalon. The development of cognitive skills (spatial learning, problem solving) in fish seems to be associated with visual orientation and well-structured habitats.

acoustico-lateralis lobes bulbus olfactorius ecomorphology lobus facialis lobus vagus tectum opticum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlbert, I.B. (1968) The organization of cone cells in the retinae of four teleosts with different feeding habits (Perca fluviatilis L., Lucioperca lucioperca L., Acerina cernua L. and Coregonus albula L.). Arch. Zool. 22, 445–481.Google Scholar
  2. Aldridge, R. and Purnell, M. (1996) The conodont controversies. TREE 11, 463–468.Google Scholar
  3. Ali, M.A. and Klyne, M.A. (1985) Vision in Vertebrates. New York, NY: Plenum Press. 272 pp.Google Scholar
  4. Allis, E.P. (1897) The cranial muscles and cranial and first spinal nerves in Amia calva. J. Morphol. 12, 487–807.Google Scholar
  5. Ariens Kappers, C.U., Huber, G.C. and Crosby, E.C. (1967) The Comparative Anatomy of the Nervous System of Vertebrates Including Man, Vols I-III. New York, NY: Hafner.Google Scholar
  6. Atema, J. (1996) Eddy chemotaxis and odor landscapes: exploration of nature with animal sensors. Biol. Bull. 191, 129–138.Google Scholar
  7. Atema, J., Fay, R.R., Popper, A.N. and Tavolga, W.N. (1988) Sensory Biology of Aquatic Animals. New York, Berlin: Springer-Verlag, 936 pp.Google Scholar
  8. Banarescu, P. (1956) Variation du torus longitudinal du cerveau chez les poissons teleosteens. Comunicarile Academiei Repub. Pop. Rom., 6, 893–899.Google Scholar
  9. Bath, H. (1965) Vergleichende biologisch-anatomische Untersuchungen über die Leistungsfähigkeit der Sinnesorgane für den Nahrungserwerb, ihre gegenseitige Abhängigkeit und ihre Beziehungen zum Bau des Gehirns bei Blennius gattorugine Brünn., Blennius galerita L. und Gobius cruentatus L., GM. Z. wiss. Zool. 172, 347–375.Google Scholar
  10. Bauchot, R., Bauchot, M.L., Platel, R. and Ridet, J.M. (1977) The brains of Hawaiian tropical fishes; brain size and evolution. Copeia 1/1977, 42–46.Google Scholar
  11. Bauchot, R., Diagne, M. and Ridet, J.-M. (1982) The brain of Photoblepharon palpebratus steinitzi (Pisces, Teleostei, Anomalopidae). J. Hirnforsch. 23, 399–404.Google Scholar
  12. Bauchot, R., Diagne, M., Ridet, J.-M. and Bauchot, M.-L. (1989a) The brain of Rhyacichthys aspro (Rhyacichthyidae, Gobioidei). Jap. J. Ichthyol. 36, 260–266.Google Scholar
  13. Bauchot, R., Ridet, J.-M. and Bauchot, M.-L. (1989b) The brain organization of butterflyfishes. In Balon, E.K. and Motta, P.J., eds. Environmental Biology of Fishes 25. Dordrecht: Kluwer Academic Publishers, pp. 205–219.Google Scholar
  14. Bhatt, J.P. and Singh, H.R. (1980) Brain pattern in Puntius chilinoides (McClelland) in relation to its feeding habits. Bioresearch 1980/4, 51–53.Google Scholar
  15. Bhatt, J.P. and Singh, H.R. (1984) Morphometric studies on the brain lobes of three coldwater teleosts. Indian J. Anim. Sci. 54, 560–565.Google Scholar
  16. Bleckmann, H. (1988) Prey identification and prey localization in surface-feeding fish and fishing spiders. In Atema, J., Fay, R.R., Popper, A.N. and Tavolga, W.N., eds. Sensory Biology of Aquatic Animals. New York, NY, Berlin: Springer-Verlag, pp. 619–642.Google Scholar
  17. Bone, Q., Marshall, N.B. and Blaxter, J.H.S. (1995) Biology of Fishes. London: Chapman and Hall, 332 pp.Google Scholar
  18. Brandstätter, R. and Kotrschal, K. (1989) Life history of roach, Rutilus rutilus (Cyprinidae, Teleostei). Brain, Behav. Evolut. 34, 35–42.Google Scholar
  19. Brandstätter, R. and Kotrschal, K. (1990) Brain growth patterns in four European cyprinid fish species (Cyprinidae, Teleostei): roach (Rutilus rutilus), bream (Abramis brama), common carp (Cyprinus carpio) and sabre carp (Pelecus cultratus). Brain, Behav. Evolut. 35, 195–211.Google Scholar
  20. Branson, B.A. (1979) Observations of the gross anatomy of the olfactory organ and eyes in five genera of American barbeled minnows (Pisces: Cyprinidae). Southwestern Nat. 24, 501–507.Google Scholar
  21. Braun, C.B. (1996) The sensory biology of the living jawless fishes: a phylogenetic assessment. Brain, Behav. Evolut. 48, 262–276.Google Scholar
  22. Burr, H.S. (1928) The central nervous system of Orthagoriscus mola. J. Comp. Neurol. 45, 33–128.Google Scholar
  23. Clutton-Brock, T.H. and Harvey, P.H. (1980) Primates, brain and ecology. J. Zool. Lond. 190, 309–323.Google Scholar
  24. Collin, S.P. and Pettigrew, J.D. (1988a) Retinal topography in reef teleosts. I. Some species with well-developed areae but poorly developed streaks. Brain, Behav. Evolut. 31, 269–282.Google Scholar
  25. Collin, S.P. and Pettigrew, J.D. (1988b) Retinal topography in reef teleosts. I. Some species with prominent horizontal streaks and high-density area. Brain, Behav. Evolut. 31, 283–295.Google Scholar
  26. Coombs, S., Janssen, J., and Webb, J. (1988) Diversity of lateral line systems: evolutionary and functional considerations. In Atema, J., Fay, R.R., Popper, A.N. and Tavolga, W.N., eds. Sensory Biology of Aquatic Animals. New York, NY, Berlin: Springer-Verlag, pp. 553–594.Google Scholar
  27. Coombs, S., Görner, P. and Münz, H. (1989) The Mechanosensory Lateral Line. Neurobiology and Evolution. New York, NY, Berlin: Springer-Verlag, 724 pp.Google Scholar
  28. Davis, B.J. and Miller, R.J. (1967) Brain patterns in minnows of the genus Hybopsis in relation to feeding habits and habitat. Copeia 1(1967), 1–39.Google Scholar
  29. Davis, R.E. and Northcutt, R.G. (eds) (1983) Fish Neurobiology. Vol. II. Ann Arbor: The University of Michigan Press.Google Scholar
  30. Demski, L. and Schwanzel-Fukuda, M. (eds) (1987) The terminal nerve (Nervus terminalis), structure, function and evolution. Ann. N.Y. Acad. Sci. 519, 469 pp.Google Scholar
  31. Denton, E.J. and Gray, J.A.B. (1988) Mechanical factors in the excitation of the lateral lines of fishes. In Atema, J., Fay, R.R., Popper, A.N. and Tavolga, W.N., eds. Sensory Biology of Aquatic Animals. New York, NY, Berlin: Springer-Verlag, pp. 595–618.Google Scholar
  32. Douglas, R.H. and Hawryshyn, C.W. (1990) Behavioural studies of fish vision: an analysis of visual capabilities. In Douglas, R.H. and Djamgoz, B.A., eds. The Visual System of Fish. London: Chapman and Hall, pp. 373–418.Google Scholar
  33. Eastman, J.T. and Lannoo, M.J. (1995) Diversification of brain morphology in Antarctic notothenioid fishes: basic descriptions and ecological considerations. J. Morphol. 223, 47–83.Google Scholar
  34. Engström, K. (1960) Cone types and cone arrangement in the retina of some cyprinids. Acta Zool. 41, 277–295.Google Scholar
  35. Engström, K. (1961) Cone types and cone mosaic in the retina of some gadids. Acta Zool. 42, 227–243.Google Scholar
  36. Engström, K. (1963) Cone types and cone arrangements in teleost retinae. Acta Zool. 44, 1–65.Google Scholar
  37. Evans, H.M. (1931) A comparative study of the brains in British cyprinoids in relation to their habits of feeding, with special reference to the anatomy of the medulla oblongata. Proc. Roy. Soc. Lond. 108B, 233–257.Google Scholar
  38. Evans, H.M. (1932) Further observations on the medulla oblongata of cyprinoids; and a comparative study of the medulla of clupeoids and cyprinoids with special reference to the acoustic tubercles. Proc. Roy. Soc. Lond. 111B, 247–280.Google Scholar
  39. Evans, H.M. (1935) The brain of Gadus, with special reference to the medulla oblongata and its variations according to the feeding habits if different Gadidae — I. Proc. Roy. Soc. Lond. 117B, 367–399.Google Scholar
  40. Evans, H.M. (1937) A comparative study of the brains in pleuronectidae. Proc. Roy. Soc. Lond. 122B, 308–343.Google Scholar
  41. Evans, H.M. (1940) Brain and Body of Fish. A Study of Brain Pattern in Relation to Hunting and Feeding in Fish. London: The Technical Press Ltd. 164 pp.Google Scholar
  42. Fernald, R.D. (1984) Vision and behavior in an African cichlid fish. Am. Scient 72, 58–65.Google Scholar
  43. Fernald, R.D. (1985) Growth of the teleost eye: novel solutions to complex constraints. Env. Biol. Fishes 17, 113–123.Google Scholar
  44. Fine, M.L., Horn, M.H. and Cox, B. (1987) Acanthonus armatus, a deep-sea teleost with a minute brain and large ears. Proc. Roy. Soc. Lond. 230B, 257–265.Google Scholar
  45. Finger, T.E. (1980) Nonolfactory sensory pathway to the telencephalon in a teleost fish. Science 210, 671–673.Google Scholar
  46. Finger, T.E. (1982) Somatotopy of the representation of the pectoral fin and free fin rays in the spinal cord of the sea robin, Prionotus carolinus. Biol. Bull. Mar. Biol. Lab. Woods Hole 163, 154–161.Google Scholar
  47. Finger, T.E. (1983a) Organization of the teleost cerebellum. In Davis, R.E. and Northcutt, R.G., eds. Fish Neurobiology, Vol. I. Ann Arbor: The University of Michigan Press, pp. 261–284.Google Scholar
  48. Finger, T.E. (1983b) The gustatory system in teleost fish. In Davis, R.E. and Northcutt, R.G., eds. Fish Neurobiology. Vol. I. Ann Arbor: The University of Michigan Press, pp. 285–311.Google Scholar
  49. Finger, T.E. (1987) Gustatory nuclei and pathways in the central nervous system. In Finger, T.E. and Silver, W.L., eds. Neurobiology of Taste and Smell. New York, NY: J. Wiley, pp. 331–354.Google Scholar
  50. Finger, T.E. (1988) Organization of chemosensory systems within the brains of bony fish. In Atema, J., Fay, R.R., Popper, A.N. and Tavolga, W.N., eds. Sensory Biology of Aquatic Animals. New York, NY, Berlin: Springer-Verlag, pp. 339–364.Google Scholar
  51. Finger, T.E., Drake, S.K., Kotrschal, K., Womble, M. and Dockstader, K.C. (1991) Postlarval growth of the peripheral gustatory system in the channel catfish, Ictalurus punctatus. J. Comp. Neurol. 314, 55–66.Google Scholar
  52. Fricke, H.W. (1975) Lösen einfacher Probleme bei einem Fisch. Z. Tierpsychol. 39, 18–33.Google Scholar
  53. Frumhoff, P.C. and Reeve, H.K. (1994) Using phylogenies to test hypotheses of adaptation: a critique of some current proposals. Evolution 48, 172–180.Google Scholar
  54. Gage, S.P. (1893) The Brain of Diemyctylus viridescens, from Larval to Adult Life and Comparisons with the Brain of Amia and Petromyzon. Ithaca, NY: The Wilder Quarter-Century Book, 313 pp.Google Scholar
  55. Gomahr, A., Palzenberger, M. and Kotrschal, K. (1992) Density and distribution of external taste buds in cyprinids. Env. Biol. Fishes 33, 125–134.Google Scholar
  56. Guthrie, D.M. (1990) The physiology of the teleost optic tectum. In Douglas, R.H. and Djamgoz, M.B.A., eds. The Visual System of Fish. London: Chapman and Hall, pp. 279–343.Google Scholar
  57. Heiligenberg, W. (1988) The neuronal basis of electrosensory perception and its control of a behavioral response in a weakly electric fish. In Atema, J., Fay, R.R., Popper, A.N. and Tavolga, W.N., eds., Sensory Biology of Aquatic Animals. New York, NY, Berlin: Springer-Verlag, pp. 851–868.Google Scholar
  58. Herrick, C.J. (1902) The organ and sense of taste in fishes. Bull. U.S. Fish. Comm. 22, 238–272.Google Scholar
  59. Herrick, C.J. (1906) On the centers of taste and touch in the medulla oblongata in fishes. J. Comp. Neurol. Psychol. 16, 403–439.Google Scholar
  60. Holmgren, N. and van der Horst, C.F. (1925) Contributions to the morphology of the brain of Ceratodus. Acta Zool. 6, 51–165.Google Scholar
  61. Huber, R. and Rylander, M.K. (1992) Brain morphology and turbidity preference in Notropis and related genera (Cyprinidae, Teleostei). In Balon, E.K., Wieser, W., Schiemer, F., Goldschmidt, A. and Kotrschal, K., eds. Environmental Biology of Fishes 33. Dordrecht: Kluwer Academic Publishers, pp. 153–165.Google Scholar
  62. Huber, R., van Staaden, M., Kaufman, L.S. and Liem, K.F. (1997) Microhabitat use, trophic patterns and the evolution of brain structure in African cichlids. Brain, Behav., Evolut. 50, 167–182.Google Scholar
  63. Ito, H. (1978) A catalogue of histological preparations of the teleost brains. Med. J. Osaka Univ. 28, 219–228.Google Scholar
  64. Ito, H. and Kishida, R. (1978) Afferent and efferent fiber connections of the carp torus longitudinalis. J. Comp. Neurol. 181, 465–476.Google Scholar
  65. Johnston, J.B. (1901) The brain of Acipenser. A contribution to the morphology of the vertebrate brain. Zool. Jahrb. 15, 59–260.Google Scholar
  66. Jolicoeur, P., Pirlot, P., Baron, G. and Stephan, H. (1984) Brain structure and correlation patterns in Insectivora, Chiroptera and primates. Syst. Zool. 33, 14–29.Google Scholar
  67. Kanwal, J.S. and Finger, T.E. (1992) Central representation and projections of gustatory systems. In Hara, T.J. ed., Chemoreception in Fishes. New York, NY: Elsevier, pp. 79–102.Google Scholar
  68. Kassem, M., Ridet, J.M. and Bauchot, R. (1989) Analyse volumètrique des principale subdivisions encèphaliques chez les Gobioidei (Tèlèostèens, Perciformes). J. Hirnforsch. 30, 59–67.Google Scholar
  69. Kishida, R. (1979) Comparative study of the teleostean optic tectum. Lamination and cytoarchitecture. J. Hirnforsch. 20, 57–67.Google Scholar
  70. Kotrschal, K. (1987) Evolutionary patterns in tropical marine reef fish feeding. Z. Zool. Syst. Evolut.-forsch. 26, 51–64.Google Scholar
  71. Kotrschal, K. (1989) Trophic ecomorphology in eastern Pacific blennioid fishes: character transformation of oral jaws and associated change of their biological roles. Env. Biol. Fishes 24, 199–218.Google Scholar
  72. Kotrschal, K. (1991) Solitary chemosensory cells — taste, common chemical sense or what? Rev. Fish Biol. Fisheries 1, 3–22.Google Scholar
  73. Kotrschal, K. (1996) Solitary chemosensory cells: why do primary aquatic vertebrates need another taste system? Trends Ecol. Evolut., 11, 110–114.Google Scholar
  74. Kotrschal, K. and Finger, T.E. (1996) Secondary connections of the dorsal and ventral facial lobes in a teleost fish, the rockling (Ciliata mustela). J. Comp. Neurol. 370, 415–426.Google Scholar
  75. Kotrschal, K. and Junger, H. (1988) Patterns of brain morphology in mid-European cyprinidae (Pisces, Teleostei): a quantitative histological study. J. Hirnforsch. 29, 341–352.Google Scholar
  76. Kotrschal, K. and Palzenberger, M. (1992) Neuroecology of cyprinids: comparative, quantitative histology reveals diverse brain patterns. In Balon, E.K., Wieser, W., Schiemer, F., Goldschmidt, A. and Kotrschal, K., eds. Environmental Biology of Fishes 33. Dordrecht: Kluwer Academic Publishers, pp. 135–152.Google Scholar
  77. Kotrschal, K. and Whitear, M. (1988) Chemosensory anterior dorsal fin in rocklings (Gaidropsarus and Ciliata, Teleostei, Gadidae): somatotopic representation of the ramus recurrens facialis as revealed by transganglionic transport of HRP. J. Comp. Neurol. 268, 109–120.Google Scholar
  78. Kotrschal, K., Krautgartner, W.-D. and Adam, H. (1983) Crown cells in the diencephalon of Acipenser ruthenus (Acipenseridae, Chondrostei). J. Hirnforsch. 24, 655–657.Google Scholar
  79. Kotrschal, K., Whitear, M. and Adam, H. (1984) Morphology and histology of the anterior dorsal fin of Gaidropsarus mediterraneus (Pisces, Teleostei), a specialized sensory organ. Zoomorphol. 104, 365–372.Google Scholar
  80. Kotrschal, K., Adam, H., Brandstätter, R., Junger, H., Zaunreiter, M. and Goldschmid, A. (1990) Larval size constraints determine directional ontogenetic shifts in the visual system of teleosts. A mini-review. Z. Zool. Syst. Evolut.-forsch. 28, 166–182.Google Scholar
  81. Kotrschal, K., Brandstätter, R., Gomahr, A., Junger, H., Palzenberger, M. and Zaunreiter, M. (1991) Brain and sensory systems. In Winfield, I.J. and Nelson, J.S., eds. Cyprinid Fishes, Systematics, Biology and Exploitation. London: Chapman and Hall, pp. 285–331.Google Scholar
  82. Kruska, D.C.T. (1988) The brain of the basking shark (Cetorhinus maximus). Brain, Behav., Evolut. 32, 353–363.Google Scholar
  83. Lamb, C.F. and Finger, T. (1995) Gustatory control of feeding behavior in goldfish. Physiol. & Behav. 57, 483–488.Google Scholar
  84. Laming, P.R. and McKinney, S.J. (1990) Habituation in goldfish (Carassius auratus) is impaired by increased interstimulus interval, interval variability, and telencephalic ablation. Behav. Neurosci. 104, 869–875.Google Scholar
  85. Levine, J.S. and MacNicol, E.F. (1979) Colour vision in fishes. Scient. Am. 246, 108–117.Google Scholar
  86. Leonhardt, H. (1980) Ependym und circumventrikuläre Organe. In Oksche, A. and Vollrath, L., eds. Neuroglia I. Handbuch der Mikroskopischen Anatomie des Menschen, Bd. IV: Nervensystem 10. Berlin: Springer, pp. 176–666.Google Scholar
  87. Loew, E.R. and Lythgoe, J.N. (1978) The ecology of cone pigments in teleost fish. Vision Res. 18, 715–722.Google Scholar
  88. Lythgoe, J.N. (1988) Light in the sea. In Atema, J., Fay, R.R., Popper, A.N. and Tavolga, W.N., eds. Sensory Biology of Aquatic Animals. New York, NY, Berlin: Springer-Verlag, pp. 57–82.Google Scholar
  89. Lythgoe, J.[N.] and Lythgoe, G. (1971) Fishes of the Sea. Poole, Dorset: Blandford Press, 320 pp.Google Scholar
  90. Maler, L., Sas, E., Johnston, S. and Ellis, W. (1991) An atlas of the brain of the electric fish Apteronotus leptorhynchus. J. Chem. Neuroanat. 4, 1–38.Google Scholar
  91. Marshall, N.B. (1967a) The organization of deep-sea fishes. Stud. trop. Oceanogr. Miami 5, 473–479.Google Scholar
  92. Marshall, N.B. (1967b) The olfactory organs of bathypelagic fishes. Symp. Zool. Soc. Lond. 19, 57–70.Google Scholar
  93. Marshall, N.B. (1971) Explorations in the Life of Fishes. Cambridge, MA: Harvard Univ. Press. 204 pp.Google Scholar
  94. Marshall, N.B. (1979) Developments in Deep-sea Biology. Poole, Dorset: Blandford Press. 566 pp.Google Scholar
  95. Masai, H., Takatsuji, K., Sato, Y. and Ojima, Y. (1982) Morphological variation in crucian brains with special reference to the origin of the goldfish. Z. Zool. Syst. Evolut.-forsch. 20, 296–301.Google Scholar
  96. Meader, R.G. (1939) The forebrain of bony fishes. Proc. Kon. Ned. Akad. v. Wetensch., Amsterdam 42, 657–670.Google Scholar
  97. Meyer, A. (1993) Phylogenetic relationships and evolutionary processes in East African cichlid fishes. TREE 8, 279–284.Google Scholar
  98. Motta, P.J. and Kotrschal, K.M. (1992) Correlative, experimental, and comparative evolutionary approaches in ecomorphology. Neth. J. Zool. 42, 400–415.Google Scholar
  99. Munk, O. (1966) Ocular anatomy of some deep-sea teleosts. Dana Rep. No. 70, 1–62.Google Scholar
  100. Nee, S., Read, A.F. and Harvey, P.H. (1996) Why phylogenies are necessary for comparative analysis. In Martins, E.P., ed. Phylogenies and the Comparative Method in Animal Behavior. New York, NY, Oxford: Oxford University Press, pp. 399–411.Google Scholar
  101. Nelson, J.S. (1994) Fishes of the World 3rd edn. New York, NY: J. Wiley & Sons, 600 pp.Google Scholar
  102. Nieuwenhuys, R. (1982) An overview of the organization of the brain of actinopterygian fishes. Amer. Zool. 22, 287–310.Google Scholar
  103. Nieuwenhuys, R. (1983) The central nervous system of the brachiopterygian fish Erpetoichthys calabaricus. J. Hirnforsch. 24, 501–533.Google Scholar
  104. Nieuwenhuys, R., ten Donkelaar, H.J. and Nicholson, C. (1998) The Central Nervous System of Vertebrates, Vols 1–3. Berlin: Springer Verlag, 2219 pp.Google Scholar
  105. Northcutt, R.G. (1996) The agnathan ark: The origin of craniate brains. Brain, Behav., Evolut. 48, 237–247.Google Scholar
  106. Northcutt, R.G. and Davis, R.E. (eds) (1983) Fish Neurobiology, Vol. I. Ann Arbor: The University of Michigan Press.Google Scholar
  107. Northcutt, R.G., Neary, T.J. and Senn, D.G. (1978) Observations on the brain of the coelacanth Latimeria chalumnae: external anatomy and quantitative analysis. J. Morph. 155, 181–192.Google Scholar
  108. Northmore, D.P.M., Williams, B. and Vanegas, H. (1983) The teleostean torus longitudinalis: responses related to eye movements, visuotopic mapping and functional relations with the optic tectum. J. Comp. Physiol. A 150, 39–50.Google Scholar
  109. Okamura, O. (1966) The brain of fishes of the order Gadida, with special reference to its morphological differentiation. Jap. J. Ichthyol. 13, 103–111.Google Scholar
  110. Osse, J.W.N., Sibbing, F.A. and van den Boogart, J.G.M. (1997) Intra-oral food manipulation of carp and other cyprinids: adaptations and limitation. Acta Physiol. Scand. 161(Suppl. 638), 47–57.Google Scholar
  111. Pagel, M.D. and Harvey, P.H. (1989) Taxonomic differences in the scaling of brain on body weight among mammals. Science 244, 1589–1593.Google Scholar
  112. Peschel, P. (1995) Zur ontogenetischen Entwicklung von Sinnessystemen, speziell der externen Geschmacksknospen und der Augen bei Rotauge (Rutilus rutilus) und Nase (Chondrostoma nasus). Masters Thesis, The University of Vienna. 61 pp.; English summary on p. 55.Google Scholar
  113. Peter, R.E. (1975) The brain and feeding behavior. Fish Physiol. 8, 121–159.Google Scholar
  114. Popper, A.N. and Fay, R.R. (1993) Sound detection and processing by fish: critical review and major research questions. Brain, Behav., Evolut. 41, 14–38.Google Scholar
  115. Rao, P.D.P. (1967) Studies on the structural variations in the brain of teleosts and their significance. Acta Anat. 68, 379–399.Google Scholar
  116. Riddell, W.I. and Corl, K.G. (1977) Comparative investigation and relationship between cerebral indices and learning abilities. Brain, Behav., Evolut. 14, 305–308.Google Scholar
  117. Ridet, J.-M. (1975) Étude quantitative de l'organisation et de la variabilité intraspècifique des principales subdivisions encéphaliques chez deux poissons Téléostéens: Labrus bergylta Ascanius, 1767, et Cyprinus carpio Linnaeus, 1758. Bull. Mus. Natl. Dohist. Naturelle 3 340, 1369–1389.Google Scholar
  118. Ridet, J.-M. and Bauchot, R. (1990a) Analyse quantitive de l'encéphale des Téléostéens: caractères evolutifs et adaptatifs de l'encéphalisation. I. Généralités et analse globale. J. Hirnforsch. 31, 51–63.Google Scholar
  119. Ridet, J.-M. and Bauchot, R. (1990b) Analyse quantitive de l'encéphale des Téléostéens: caractères evolutifs et adaptatifs de l'encéphalisation. II. Le grandes subdivisions encéphaliques. J. Hirnforsch. 31, 433–458.Google Scholar
  120. Romer, A.S. (1959) The Vertebrate Story. London: The Univ. Chicago Press. 437 pp.Google Scholar
  121. Romer, A.S. and Parsons, T.S. (1977) The Vertebrate Body. Philadelphia: W.B. Saunders. 624 pp.Google Scholar
  122. Rooney, D.J. and Laming, P.R. (1988) Effects of telencephalic ablation on habituation of arousal responses, within and between daily training sessions in goldfish. Behav. Neur. Biol. 49, 83–96.Google Scholar
  123. Schellart, N.A.M. (1992) Interrelationships between the auditory, the visual and the lateral line systems of teleosts; a mini-review of modelling sensory capabilities. Neth. J. Zool. 42, 459–477.Google Scholar
  124. Schellart, N.A.M. and Prins, M. (1993) Interspecific allometry of the teleost visual system: a new approach. Neth. J. Zool. 43, 274–295.Google Scholar
  125. Schiemer, F. (1985) Die Bedeutung der Augewässer als Schutzzonen für die Fischfauna. Österr. Wasserwirtschaft 37, 239–245.Google Scholar
  126. Schiemer, F. (1988) Gefährdete Cypriniden — Indikatoren für die ökologische Intaktheit von Flußsystemen. Natur Landsch. 63, 370–373.Google Scholar
  127. Schnitzlein, H.N. (1964) Correlation of habit and structure in the fish brain. Am. Zool. 4, 21–32.Google Scholar
  128. Seehausen, O., van Alphen, J.J.M. and Witte, F. (1997) Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277, 1808–1811.Google Scholar
  129. Senn, D.G. (1976) Brain structure in Calamoichthys calabaricus Smith 1865 (Polypteridae, Brachiopterygii). Acta Zool. (Stockh.) 57, 121–128.Google Scholar
  130. Senn, D.G. (1985) On variation in the brain of bony fishes. Fortschr. Zool. 30, Stuttgart: Gustav Fischer Verlag, pp. 607–610.Google Scholar
  131. Shanklin, W.M. (1935) VIII-On diencephalic and mesencephalic nuclei and fibre paths in the brains of three deep sea fish. Phil. Trans. Roy. Soc. Lond. 224, 361–419.Google Scholar
  132. Sibbing, F.A. (1991) Food capture and oral processing. In Winfield, I.J. and Nelson. J.S., eds. Cyprinid Fishes, Systematics, Biology and Exploitation. London: Chapman and Hall, pp. 377–412.Google Scholar
  133. Sibbing, F.A. and Uribe, R. (1985) Regional specializations in the oropharyngeal wall and food processing in the carp (Cyprinus carpio). Neth. J. Zool. 35, 377–422.Google Scholar
  134. Singh, C.P. (1972) A comparative observation of the brain of some Indian freshwater teleosts, with special reference to their feeding habits. Anat. Anz. 131, 234–237.Google Scholar
  135. Sneath, P.H.A. and Sokal, R.R. (1973) Numerical Taxonomy. San Francisco: W.H. Freeman and Co. 573 pp.Google Scholar
  136. Snow, J.L. and Rylander, M.K. (1982) A quantitative study of the optic system of butterflyfishes (Family Chaetodontidae). J. Hirnforsch. 23, 121–125.Google Scholar
  137. Stabell, O.B. and Maung San Lwin (1997) Predator-induced phenotypic changes in crucian carp are caused by chemical signals from conspecifics. Env. Biol. Fish 49, 145–149.Google Scholar
  138. Stell, W.K., Walker, S.E. and Ball, A.K. (1987) Functional-anatomical studies on the terminal nerve projection to the retina of bony fishes. In Demski, L. and Schwanzel-Fukuda, M., eds. The Terminal Nerve (Nervus terminalis), Structure, Function and Evolution. Ann. N.Y. Acad. Sci. 519, 80–96.Google Scholar
  139. Stephan, H. (1967) Zur Entwicklung der Insektivoren nach Merkmalen des Gehirns und die Definition der 'basalen Insektivoren'. Zool. Anz. 179, 177–199.Google Scholar
  140. Strauss, R.E. (1984) Allometry and functional feeding morphology in haplochromine cichlids. In Echelle, A.A. and Kornfield, I., eds. Evolution of Fish Species Flocks. Orono, ME: Univ. Maine Press, pp. 217–230.Google Scholar
  141. Toyoda, J. and Uematsu, K. (1994) Brain morphogenesis of red sea bream, Pagrus major (Teleostei). Brain, Behav., Evol. 44, 324–337.Google Scholar
  142. Tuge, H., Uchihashi, K. and Sugiura, K. (1968) An Atlas of the Brains of Fishes of Japan. Tokio: Tsukiji Shokan Publishing Co., Ltd. 240 pp.Google Scholar
  143. van der Meer, H.J. and Anker, G.C. (1984) Retinal resolving power and sensitivity to the photopic system in seven haplochromine species (Teleostei, Cichlidae). Neth. J. Zool. 34, 197–209.Google Scholar
  144. van Staaden, M., Huber, R., Kaufman, L. and Liem, K. (1995) Brain evolution in cichlids of the African Great Lakes: brain and body size, general patterns and evolutionary trends. Zoology 98, 165–178.Google Scholar
  145. Vigh-Teichmann, I. and B. Vigh (1983) The system of cerebrospinal fluid-contacting neurons. Arch. Histol. Jap. 46, 427–468.Google Scholar
  146. von Bartheld, C.S. and Meyer, D.L. (1988) Central projections of the nervus terminalis in lampreys, lungfishes and bichirs. Brain, Behav., Evol. 32, 151–159.Google Scholar
  147. Waterman, T.H. (1948) Studies on deep-sea angler-fishes (Ceratioidea). III. The comparative anatomy of Gigantactis longicirra. J. Morphol. 82, 81–149.Google Scholar
  148. Webb, J.F. and Northcutt, G. (1997) Morphology and distribution of pit organs and canal neuromasts in non-teleost bony fishes. Brain, Behav., Evolut. 50, 139–151.Google Scholar
  149. Weiger, T., Lametschwandtner, A., Kotrschal, K. and Krautgartner, W.D. (1988) Vascularization of the telencephalic chorioid plexus of a ganoid fish [Acipenser ruthenus (L.)]. Am. J. Anat. 182, 33–41.Google Scholar
  150. Wicht, H. (1996) The brains of lampreys and hagfishes: Characteristics, characters and comparisons. Brain, Behav., Evolut. 48, 248–261.Google Scholar
  151. Williams, G.C. (1975) Sex and Evolution. Princeton, NJ: Princeton University Press. 201 pp.Google Scholar
  152. Winfield, I.J. and Nelson, J.S. (eds) (1991) Cyprinid Fishes, Systematics, Biology and Exploitation. London: Chapman and Hall, 667 pp.Google Scholar
  153. Winkelmann, E. and Winkelmann, L. (1968) Vergleichend histologische Untersuchungen zur funktionellen Morphologie des Tectum opticum verschiedener Teleostier. J. Hirnforsch. 10, 1–16.Google Scholar
  154. Wullimann, M.F. (1994) The teleostean torus longitudinalis: a short review on its structure, histochemistry, connectivity, possible function and phylogeny. Europ. J. Morphol. 32, 235–242.Google Scholar
  155. Zakon, H. (1988) The electroreceptors: diversity in structure and function. In Atema, J., Fay, R.R., Popper, A.N. and Tavolga, W.N. (1988) Sensory Biology of Aquatic Animals. New York, NY, Berlin: Springer-Verlag, pp. 813–850.Google Scholar
  156. Zaunreiter, M., Junger, H. and Kotrschal, K. (1991) Retinal morphology of cyprinid fishes: a quantitative histological study of the ontogenetic changes and interspecific variation. Vision Res. 31, 383–394.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • K. Kotrschal
    • 1
  • M.J. Van Staaden
    • 1
  • R. Huber
    • 1
  1. 1.Institute of Zoology, Department of EthologyThe University of Vienna and Konrad Lorenz ForschungsstelleGrOnau 11Austria

Personalised recommendations