Journal of Computational Neuroscience

, Volume 5, Issue 1, pp 71–90 | Cite as

A Mathematical Model of the Cerebellar-Olivary System II: Motor Adaptation Through Systematic Disruption of Climbing Fiber Equilibrium

  • Garrett T. Kenyon
  • Javier F. Medina
  • Michael D. Mauk


The implications for motor learning of the model developed in the previous article are analyzed using idealized Pavlovian eyelid conditioning trials, a simple example of cerebellar motor learning. Results suggest that changes in gr→Pkj synapses produced by a training trial disrupt equilibrium and lead to subsequent changes in the opposite direction that restore equilibrium. We show that these opposing phases would make the net plasticity at each gr→Pkj synapse proportional to the change in its activity during the training trial, as influenced by a factor that precludes plasticity when changes in activity are inconsistent. This yields an expression for the component of granule cell activity that supports learning, the across-trials consistency vector, the square of which determines the expected rate of learning. These results suggest that the equilibrium maintained by the cerebellar-olivary system must be disrupted in a specific and systematic manner to promote cerebellar-mediated motor learning.

eyelid conditioning Purkinje nictitating LTP LTD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albus JS (1971) A theory of cerebellar function. Math. Biosci. 10:25-61.CrossRefGoogle Scholar
  2. Berthier NE, Moore JW (1986) Cerebellar Purkinje cell activity related to the classically conditioned nictitating membrane response. Exp. Brain Res. 63:341-350.CrossRefPubMedGoogle Scholar
  3. Bloedel JR (1992) Functional heterogeneity with structural homogeneity: How does the cerebellum operate? Behav. Brain Sci. 15:666-678.Google Scholar
  4. Bloedel JR, Courville J (1981) Cerebellar afferent systems. In: VB Brooks, ed. Handbook of Physiology, The Nervous System, Section 1, Bethesda, pp. 877-946.Google Scholar
  5. Bower JM, Kassel J (1990) Variability in tactile projection patterns to cerebellar folia Crus IIA in the Norway rat. J. Comp. Neurol. 302:768-778.PubMedGoogle Scholar
  6. Bracke-Tolkmitt R, Linen A, Canavan AGM, Rockstroh B, Scholz E, Wessel K, Diener HC (1989) The cerebellum contributes to mental skills. Behav. Neurosci. 103:442-446.CrossRefGoogle Scholar
  7. Bullock D, Fiala J, Grossberg S (1994) A neural model of timed response learning in the cerebellum. Neural Networks 7:1101-1114.Google Scholar
  8. Buonomano DV, Mauk MD (1994) Neural network model of the cerebellum: Temporal discrimination and the timing of motor responses. Neural Comp. 6:38-55.Google Scholar
  9. De Schutter E (1995) Cerebellar long-term depression might normalize excitation of Purkinje cells: A hypothesis. Trends Neurosci. 18:291-295.CrossRefPubMedGoogle Scholar
  10. Donegan NH, Gluck MA, Thompson RF (1989) Integrating behavioral and biological models of classical conditioning. In: RD Hawkins, GH Bower, eds. Computational Models of Learning in Simple Neural Systems. Academic Press, New York, pp. 109-156.Google Scholar
  11. Dow RS, Moruzzi G (1958) In: The Physiology and Pathology of the Cerebellum. University of Minnesota Press, Minneapolis.Google Scholar
  12. du Lac S, Raymond JL, Sejnowski TJ, Lisberger SG (1995) Learning and memory in the vestibulo-ocular reflex. Ann. Rev. Neurosci. 18:409-442.CrossRefPubMedGoogle Scholar
  13. Ekerot CF, Kano M (1985) Long-term depression of parallel fibre synapses following stimulation of climbing fibres. Brain Res. 342:357-360.CrossRefPubMedGoogle Scholar
  14. Fiez JA, Petersen SE, Cheney MK, Raichle ME (1992) Impaired non-motor learning and error detection associated with cerebellar damage: A single case study. Brain 115(1):155-178.PubMedGoogle Scholar
  15. Fujita M (1982) Adaptive filter model of the cerebellum. Biol. Cybern. 45:195-206.CrossRefPubMedGoogle Scholar
  16. Gao JH, Parsons LM, Bower JM, Xiong J, Li J, Fox PT (1996) Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science 272:545-547.PubMedGoogle Scholar
  17. Gilbert PFC (1974) A theory of memory that explains the structure and function of the cerebellum. Brain Res. 70:1-18.CrossRefPubMedGoogle Scholar
  18. Gilbert PFC (1975) How the cerebellum could memorize movements. Nature 254:688-689.PubMedGoogle Scholar
  19. Gilbert PFC, Thach WT (1977) Purkinje cell activity during motor learning. Brain Res. 128:309-328.CrossRefPubMedGoogle Scholar
  20. Gilman S, Bloedel JR, Lechtenberg R (1981) Disorders of the Cerebellum. Davis, Philadelphia.Google Scholar
  21. Gluck MA, Reifsnider ES, Thompson RF (1990) Adaptive signal processing and the cerebellum: Models of classical conditioning and VOR adaptation. In: MA Gluck, DE Rumelhart, eds. Neuroscience and Connectionist Theory. Erlbaum, Hillsdale, NJ, pp. 131-186.Google Scholar
  22. Gormezano I, Schneiderman N, Deaux E, Fuentes I (1962) Nictitating membrane: Classical conditioning and extinction in the albino rabbit. Science 138:33-34.PubMedGoogle Scholar
  23. Gould TJ, Steinmetz JE (1996) Changes in rabbit cerebellar cortical and interpositus nucleus activity during acquisition, extinction, and backwards classical eyelid conditioning. Neurobiol. Learn. Mem. 65:17-34.CrossRefPubMedGoogle Scholar
  24. Hirano T (1990) Depression and potentiation of the synaptic transmission between a granule cell and a Purkinje cell in rat cerebellar culture. Neurosci. Lett. 119:141-144.CrossRefPubMedGoogle Scholar
  25. Houk JC, Wise SP (1995) Distributed modular architectures linking basal ganglia, cerebellum, and cerebellar cortex: Their role in planning and controlling action. Cerebral Cortex 5:95-110.PubMedGoogle Scholar
  26. Ito M (1982) Cerebellar control of the vestibulo-ocular reflex: Around the flocculus hypothesis. Ann. Rev. Neurosci. 12:85-102.CrossRefGoogle Scholar
  27. Ito M (1989) Long-term depression. Ann. Rev. Neurosci. 12:85-102.CrossRefPubMedGoogle Scholar
  28. Ito M, Kano M (1982) Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci. Lett. 33:253-258.CrossRefPubMedGoogle Scholar
  29. Ivry RB, Keele SW, Diener HC (1988) Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp. Brain Res. 73:167-180.CrossRefPubMedGoogle Scholar
  30. Kano M, Kato M (1988) Mode of induction of long-term depression at parallel fibre-Purkinje cell synapses in rabbit cerebellar cortex. Neurosci. Res. 1988:544-556.CrossRefGoogle Scholar
  31. Kawato M, Gomi H (1992) The cerebellum and VOR/OKR learning models. Trends Neurosci. 15:445-453.CrossRefPubMedGoogle Scholar
  32. Keating JG, Thach WT (1995) Nonclock behavior of inferior olive neurons: Interspike interval of Purkinje cell complex spike discharge in the awake behaving monkey is random. J. Neurophysiol. 73:1329-1340.PubMedGoogle Scholar
  33. Kelly TM, Zuo CC, Bloedel JR (1990) Classical conditioning of the eyeblink reflex in the decerebrate-decerebellate rabbit. Behav. Brain Res. 38:7-18.CrossRefPubMedGoogle Scholar
  34. Kenyon GT, Medina JF, Mauk MD (1998) A mathematical model of the cerebellar-olivary system I: Self-regulating equilibrium of climbing fiber activity. J. Comput. Neurosci. 5:17-33CrossRefPubMedGoogle Scholar
  35. Kim SG, Ugurbil K, Strick PL (1994) Activation of a cerebellar output nucleus during cognitive processing. Science 265:949-951.PubMedGoogle Scholar
  36. Leiner HC, Leiner AL, Dow RS (1991) The human cerebrocerebellar system: Its computing, cognitive and language skills. Behav. Brain Res. 44:113-128.PubMedGoogle Scholar
  37. Lewis JL, LoTurco JJ, Solomon PR (1987) Lesions of the middle cerebellar peduncle disrupt acquisition and retention of the rabbit's classically conditioned nicitating membrane response. Behav. Neurosci. 101:151-157.CrossRefPubMedGoogle Scholar
  38. Linden DJ, Connor JA (1993) Cellular mechanisms of long-term depression in the cerebellum. Curr. Opin. Neurobiol. 3:401-406.CrossRefPubMedGoogle Scholar
  39. Linden DJ, Dickenson MH, Smeyne M, Connor JA (1991) A long-term depression of AMPA currents in cultured cerebellar Purkinje neurons. Neuron 7:81-89.CrossRefPubMedGoogle Scholar
  40. Lisberger SG (1988) The neural basis for learning simple motor skills. Science 242:728-735.PubMedGoogle Scholar
  41. Llinas R, Walton K, Hillman DE, Sotelo C (1975) Inferior olive: Its role in motor learning. Science 190:1230-1231.PubMedGoogle Scholar
  42. Llinas R, Welsh JP (1993) On the cerebellum and motor learning. Curr. Opin. Neurobiol. 3:958-968.CrossRefPubMedGoogle Scholar
  43. Marr D (1969) A theory of cerebellar cortex. J. Physiol. 202:437-470.PubMedGoogle Scholar
  44. Mauk M. (1997) Roles of cerebellar cortex and nuclei in motor learning: Contradictions or clues? Neuron 18:343-346.CrossRefPubMedGoogle Scholar
  45. Mauk M, Donegan N (1997) A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. Learn. Memory. 4:130-158.Google Scholar
  46. Mauk MD, Steinmetz JE, Thompson RF (1986) Classical conditioning using the stimulation of the inferior olive as the unconditioned stimulus. Proc. Natl. Acad. Sci. 83:5249-5353.Google Scholar
  47. McCormick DA, Thompson RF (1984a) Cerebellum: Essential involvement in the classically conditioned eyelid response. Science 223:296-299.PubMedGoogle Scholar
  48. McCormick DA, Thompson RF (1984b) Neuronal responses of the rabbit cerebellum during acquisition and performance of a classically conditioned nictitating membrane-eyelid response. J. Neurosci. 4:2811-2822.PubMedGoogle Scholar
  49. McCormick DA, Steinmetz JE, Thompson RF (1985) Lesions of the inferior olivary complex cause extinction of the classically conditioned nictitating membrane/eyelid response. Brain Res. 359:120-130.CrossRefPubMedGoogle Scholar
  50. Medina JF, Mauk MD (1995) Stochastic simulations of cerebellar mediated motor adaptation (Abstract). Soc. Neurosci. Abstr. 21:1222.Google Scholar
  51. Middleton FA, Strick PL (1994) Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266:458-461.PubMedGoogle Scholar
  52. Moore JW, Desmond JE, Berthier NE (1989) Adaptively timed conditioned responses and the cerebellum: A neural network approach. Biol. Cybern. 62:17-28.CrossRefPubMedGoogle Scholar
  53. Nagao S (1983) Effects of vestibulocerebellar lesions upon dynamic characteristics and adaptation of vestibulo-ocular and optokinetic responses in pigmented rabbits. Exp. Brain Res. 53:152-168.CrossRefGoogle Scholar
  54. Optican LM, Robinson DA (1980) Cerebellar-dependent adaptive control of primate saccadic system. J. Neurophysiol. 44:1058-1076.PubMedGoogle Scholar
  55. Pellionisz A, Llinas R (1980) Tensorial approach to the geometry of brain function: Cerebellar coordination via a metric tensor. Neurosci. 5:1125-1136.CrossRefGoogle Scholar
  56. Perrett SP, Mauk MD (1995) Extinction of conditioned eyelid responses requires the anterior lobe of the cerebellar cortex. J. Neurosci. 15:2074-2080.PubMedGoogle Scholar
  57. Perrett SP, Ruiz BP, Mauk MD (1993) Cerebellar cortex lesions disrupt the learning-dependent timing of conditioned eyelid responses. J. Neurosci. 13:1708-1718.PubMedGoogle Scholar
  58. Raymond JL, Lisberger SG, Mauk MD (1996) The cerebellum: A neural learning machine? Science 272:1126-1131.PubMedGoogle Scholar
  59. Rescorla R, Wagner A (1972) A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and non-reinforcement. In: A Black, W Prokasy, eds. Classical Conditioning II: Current Research and Theory. Appleton-Century-Crofts, New York, pp. 64-99.Google Scholar
  60. Robinson DA (1976) Adaptive gain control of the vestibulo-ocular reflex by the cerebellum. J. Neurophysiol. 39:954-969.PubMedGoogle Scholar
  61. Sakurai M (1987) Synaptic modification of parallel fibre-Purkinje cell transmission in in vitroguineapig cerebellar slices. J. Physiol. (London) 394:463-480.Google Scholar
  62. Sakurai M (1989) Depression and potentiation of parallel fiber-Purkinje cell transmission in in vitrocerebellar slices. In: P Strata, ed. The Olivocerebellar System in Motor Control. Springer-Verlag, New York. Vol. 17, pp. 221-230.Google Scholar
  63. Salin PA, Malenka RC, Nicoll RA (1996) Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron. 16:797-803.CrossRefPubMedGoogle Scholar
  64. Schreurs BG, Alkon DL (1993) Rabbit cerebellar slice analysis of long-term depression and its role in classical conditioning. Brain Res. 631:235-240.CrossRefPubMedGoogle Scholar
  65. Sears LL, Steinmetz JE (1991) Dorsal accessory inferior olive activity diminishes during acquisition of the rabbit classically conditioned eyelid response. Brain Res. 545:114-122.CrossRefPubMedGoogle Scholar
  66. Sejnowski TJ (1977) Storing covariance with nonlinearly interacting neurons. J. Math. Biol. 4:303-321.CrossRefPubMedGoogle Scholar
  67. Shibuki K, Okada D (1992) Cerebellar long-term potentiation under suppressed postsynaptic Ca2+ activity. NeuroReport 3:231-234.PubMedGoogle Scholar
  68. Solomon PR, Lewis JL, LoTurco JJ, Steinmetz JE, Thompson RF (1986) The role of the middle cerebellar peduncle in acquisition and retention of the rabbit's classically conditioned nictitating membrane response. Bull. Psychonom. Soc. 24:74-78.Google Scholar
  69. Steinmetz JE, Lavond DG, Thompson RF (1985) Classical conditioning of the rabbit eyelid response with mossy fiber stimulation as the conditioned stimulus. Bull. Psychonom. Soc. 28:245-248.Google Scholar
  70. Steinmetz JE, Lavond DG, Thompson RF (1989) Classical conditioning in rabbits using pontine nucleus stimulation as a conditioned stimulus and inferior olive stimulation as an unconditioned stimulus. Synapse 3:225-233.PubMedGoogle Scholar
  71. Steinmetz JE, Logan CG, Rosen DJ, Thompson JK, Lavond DG, Thompson RF (1987) Initial localization of the acoustic conditioned stimulus projection system to the cerebellum essential for classical eyelid conditioning. Proc. Natl. Acad. Sci. 84:3531-3535.PubMedGoogle Scholar
  72. Steinmetz JE, Logan CG, Thompson RF (1988) Essential involvement of mossy fibers in projecting the conditioned stimulus to the cerebellum during classical conditioning. In: DL Woody, DL Alkon, JL McGaugh, eds. Cellular Mechanisms of Conditioning and Behavioral Plasticity. Plenum, New York, pp. 143-148.Google Scholar
  73. Steinmetz JE, Rosen DJ, Chapman PR, Lavond DG, Thompson RF (1986) Classical conditioning of the rabbit eyelid response with a mossy fiber stimulation conditioned stimulus. I. Pontine nuclei and middle cerebellar peduncle stimulation. Behav. Neurosci. 100:871-880.Google Scholar
  74. Thach WT (1980) Complex spikes, the inferior olive, and natural behavior. In: J Courville, C de Montigny, Y Lamarre, eds. The Inferior Olivary Nucleus: Anatomy and Physiology. Raven Press, New York, pp. 349-360.Google Scholar
  75. Thach WT, Goodkin JP, Keating JG (1992) Cerebellum and the adaptive coordination of movement. Ann. Rev. Neurosci. 15:403-442.CrossRefPubMedGoogle Scholar
  76. Thompson RF (1986) The neurobiology of learning and memory. Science 233:941-947.PubMedGoogle Scholar
  77. Watanabe E (1984) Neuronal events correlated with long-term adaptation of the horizontal vestibulo-ocular reflex in the primate flocculus. Brain Res. 297:169-174.CrossRefPubMedGoogle Scholar
  78. Welsh JP, Harvey JA (1989) Cerebellar lesions and the nictitating membrane reflex: Performance deficits of the conditioned and unconditioned response. J. Neurosci. 9:299-311.PubMedGoogle Scholar
  79. Westheimer G, Blair SM (1973) Oculomotor defects in cerebellectomized monkeys. Invest. Opthamol. 12:618-621.Google Scholar
  80. Yeo CH, Hardiman MJ, Glickstein M (1986) Classical conditioning of the nictitating membrane response of the rabbit. IV. Lesions of the inferior olive. Exp. Brain Res. 63:81-92.CrossRefPubMedGoogle Scholar
  81. Zee DS, Yamazaki A, Butler PH, Gucer G (1981) Effects of ablation of flocculus and paraflocculus on eye movements in the primate. J. Neurophysiol. 46:878-899.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Garrett T. Kenyon
    • 1
  • Javier F. Medina
    • 1
  • Michael D. Mauk
    • 1
  1. 1.Department of Neurobiology and AnatomyUniversity of Texas Medical School at HoustonHouston

Personalised recommendations