Biodiversity & Conservation

, Volume 7, Issue 9, pp 1147–1161

Role of fungi in marine ecosystems

  • Kevin D. Hyde
  • E.B. Gareth Jones
  • Eduardo Leaño
  • Stephen B. Pointing
  • Asha D. Poonyth
  • Lilian L.P. Vrijmoed
Article

Abstract

Marine fungi are an ecological rather than a taxonomic group and comprise an estimated 1500 species, excluding those that form lichens. They occur in most marine habitats and generally have a pantropical or pantemperate distribution. Marine fungi are major decomposers of woody and herbaceous substrates in marine ecosystems. Their importance lies in their ability to aggressively degrade lignocellulose. They may be important in the degradation of dead animals and animal parts. Marine fungi are important pathogens of plants and animals and also form symbiotic relationships with other organisms. The effect of disturbances on marine fungi is poorly investigated. Keystone marine species may exist, especially in mutualistic symbioses. However, as many saprophytes appear to carry out the same function simultaneously, they may be functionally redundant. The need for a concerted effort to investigate the biodiversity and role of marine fungi globally and on as many substrata as possible is presented.

biodiversity biogeography fungi marine nutrient cycling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alderman, D.J. and Polglase, J.L. (1986) Are fungal diseases significant in the marine environment? In The Biology of Marine Fungi (S.T. Moss, ed.), pp. 189–98. London: Cambridge University Press.Google Scholar
  2. Amon, J.P. (1984) Rhizopidium littoreum: a chytrid from siphonaceous marine algae–an ultra-structural examination. Mycologia 76, 132–9.Google Scholar
  3. Barghoorn, E.S. and Linder, D.H. (1944) Marine fungi: their taxonomy and biology. Farlowia 1, 395–467.Google Scholar
  4. Blanchette, R.A., Nilsson, T., Daniel, G. and Abad, A. (1990) Biological degradation of wood. In Archaelogical wood, properties, chemistry and conservation (R.M. Rowen and R.J. Barbour, eds), pp 141–76 [Advances in Chemistry Series No. 125]. Washington: American Chemical Society.Google Scholar
  5. Blum, L.K., Mills, A.L., Zieman, J.C. and Zieman R.T. (1988) Abundance of bacteria and fungi in seagrass and mangrove detritus. Mar. Ecol. Prog. Ser. 42, 73–8.Google Scholar
  6. Boullard, B. (1958) Natural re-establishment of vesicular-arbuscular mycorrhizae following strip mine reclamation in Wyoming.. J. Appl. Ecol. 17, 139–47.Google Scholar
  7. Bower, S. (1986) Labyrinthuloides haliotidis n. sp. (Protozoa: Labyrinthomorpha), a pathogenic parasite of small juvenile abalone in a British Columbia mariculture facility. Can. J. Zool. 65, 1996–2007.Google Scholar
  8. Bremer, G.B. (1995) Lower marine fungi (Labyrinthulomycetes) and decay of mangrove leaf litter. Hydrobiologia 295, 89–95.Google Scholar
  9. Chalermpongse, A. (1991) Fungal diseases in mangrove forest ecosystem. In: Proceedings of the 5th Silvicultural Seminar. 27-29 March, 1991 pp. 307–338. Thailand, Bangkok: Royal Forest Department.Google Scholar
  10. Eaton, R.A. and Hale, M.D. (1993) Wood Decay Pests and Prevention. London: Chapman and Hall.Google Scholar
  11. Farr, D.F., Bills, G.F., Chamuris, G.P. and Rossman, A.Y. (1989) Fungi on Plants and Plant Products in the United States. Washington: The American Phytopathological Society Press.Google Scholar
  12. Fell, J.W. and Master, I.M. (1973) Fungi associated with the degradation of mangrove (Rhizophora mangle L.) leaves in South Florida. In Estuarine Microbial Ecology (L.H. Stevenson & R.R. Colwell, eds), pp. 455–66. USA University of South Carolina Press.Google Scholar
  13. Fengel and Wegener (1989) Wood. New York: De Gruyter.Google Scholar
  14. Fletcher, A. (1975) Key for identification of British marine and maritime lichens I. Siliceous rock shore species. Lichenologist 7, 1–52.Google Scholar
  15. Garrettson-Cornell, L. and Simpson, J. (1984) Three new marine Phytophthora species from New South Wales. Mycotaxon 19, 453–70.Google Scholar
  16. Hawksworth, D.L. (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol. Res. 95, 641–55.Google Scholar
  17. Hawksworth, D.L., Kirk, P.M., Sutton, B.C. and Pegler, D.N. (1995) Ainsworth & Bisby's Dictionary of the Fungi. 8th edition. Wallingford: CAB International.Google Scholar
  18. Ho, W.H. and Hyde K.D. (1996) Pterosporidium gen. nov. to accommodate two species of Anthostomella from mangrove leaves. Can. J. Bot. 74, 1826–9.Google Scholar
  19. Ho, W.H. and Hyde K.D. (1997) Fungi associated with leaf spots of mangroves in Hong Kong. Mycoscience: in press.Google Scholar
  20. Holt, D.M. and Jones, E.B.G. (1983) Bacterial degradation of lignified wood cell walls in anaerobic aquatic habitats. Appl. Environ. Microbiol. 46, 722–7.Google Scholar
  21. Hutchings, P. and Saenger, P. (1987) Ecology of Mangroves. St Lucia: University of Queensland Press.Google Scholar
  22. Hyde, K.D. (1988) Studies on the tropical marine fungi of Brunei. Bot. J. Linn. Soc. 98, 135–51.Google Scholar
  23. Hyde, K.D. (1989a) Ecology of tropical marine fungi. Hydrobiologia 178, 199–208.Google Scholar
  24. Hyde, K.D. (1989b) Vertical zonation of intertidal mangrove fungi. In Recent Advances in Microbial Ecology (T. Hattori, Y. Ishida, Y. Maruyama, R.Y. Morita and A. Uchida, eds), pp. 302–6. Tokyo: Japan Scientific Societies Press.Google Scholar
  25. Hyde, K.D. (1996) Marine fungi. In Fungi of Australia. Vol 1B (C. Grgurinovic and K. Mallett, eds), pp. 39–64. Canberra: ABRS/CSIRO.Google Scholar
  26. Hyde, K.D. and Cannon, P.A. (1992) Polystigma sonneratiae causing leaf spots on the mangrove genus Sonneratia. Aust. Syst. Bot. 5, 415–20.Google Scholar
  27. Hyde, K.D. and Lee, S.Y. (1995) Ecology of mangrove fungi and their role in nutrient cycling: what gaps occur in our knowledge? Hydrobiologia 295, 107–18.Google Scholar
  28. Ito, T. and Nakagiri, A. (1997) A mycofloral study on mangrove mud in Okinawa, Japan. Institute of Fermentation, Osaka, Research Communications 18, 32–9.Google Scholar
  29. Johnson, P.T. (1983) Diseases caused by viruses, rickettsiae, bacteria and fungi. In The Biology of Crustacea Vol. 6 Pathobiology (A.J. Provenzano, ed.), pp. 1–78. New York: Academic Press.Google Scholar
  30. Jones, E.B.G. (ed.) (1976) Recent Advances in Aquatic Mycology. London: Elek Science.Google Scholar
  31. Jones, E.B.G. (1993) Tropical marine fungi. In Aspects of Tropical Mycology (S. Isaac, J.C. Frankland, R. Watling and A.J.S. Whalley, eds), pp. 73–89. Cambridge: Cambridge University Press.Google Scholar
  32. Jones, E.B.G. (1994) Fungal adhesion. Mycol. Res. 98, 961–81.Google Scholar
  33. Jones, E.B.G. (1995) Ultrastructure and taxonomy of the aquatic ascomycetous order Halos-phaeriales. Can. J. Bot. 73 (suppl.), 5790–801.Google Scholar
  34. Jones, E.B.G. and Alias S.A. (1997) Biodiversity of mangrove fungi. In Biodiversity of tropical microfungi (K.D. Hyde, ed), pp. 71–92. Hong Kong: Hong Kong University Press.Google Scholar
  35. Jones, E.B.G. and Jennings, D.H. (1964) The effect of salinity on the growth of marine fungi in comparison with non-marine species. Trans. Br. Mycol. Soc. 47, 619–25.Google Scholar
  36. Jones, E.B.G. and Mitchell, J.I. (1996) Biodiversity of marine fungi. In Biodiversity: International Biodiversity Seminar (A. Cimerman and N. Gunde-Cimerman, eds), pp. 31–42. Ljubljana: National Inst. Chemistry and Slovenia National Commission for UNESCO.Google Scholar
  37. Kerwin, J.L., Johnson, L.M., Whisler, H.C. and Tuiniga, A.R. (1992) Infection and morphogenesis of Pythium marinum in species of Porphyra and other red algae. Can. J. Bot. 70, 1017–4.Google Scholar
  38. Khan A.G. (1974) The occurrence of mycorrhizas in halophytes, hydrophytes and xerophytes and of endogone spores in adjacent soils. J. Gen. Microbiol. 81, 7–14.Google Scholar
  39. Khan, A.G. and Belik, M. (1995) Occurrence and ecological significance of mycorrhizal symbiosis in aquatic plants. In Mycorrhiza (A. Varma and B. Hock, eds), pp. 628–66. Berlin: Springer-Verlag.Google Scholar
  40. Kohlmeyer, J. and Kohlmeyer, E. (1969) Ecological notes on fungi in mangrove forests. Trans. Brit. Mycol. Soc. 53, 237–50.Google Scholar
  41. Kohlmeyer, J. and Kohlmeyer, E. (1979) Marine Mycology: The Higher Fungi. London: Academic Press.Google Scholar
  42. Kohlmeyer, J. and Volkmann-Kohlmeyer, B. (1991) Illustrated key to the filamentous fungi. Bot. Mar. 34, 1–61.Google Scholar
  43. Kohlmeyer, J., Volkmann-Kohlmeyer, B. and Eriksson, O.E. (1996) Fungi on Juncus roemerianus. 8. New bitunicate ascomycetes. Can. J. Bot. 74, 1830–40.Google Scholar
  44. Lee, S.Y. (1995) Mangrove outwelling: a review. Hydrobiologia 295, 203–12.Google Scholar
  45. Lee, B.K.H. and Baker, G.E. (1972) An ecological study of the soil microfungi in a Hawaiian mangrove swamp. Pac. Sci. 26, 1–10.Google Scholar
  46. Lightner, D.V. (1988) Black gill syndrome of penaeid shrimp. In Disease Diagnosis and Control in North American Marine Aquaculture, Developments in Aquaculture and Fisheries Science. Vol. 17. edn. 2 (C.J. Sinderman and D.V. Lightner, eds), pp. 86–8. New York: Elsevier Scientific Publishing.Google Scholar
  47. McCarthy, P.M. (1991) Notes on Verrucariaceae (Lichenes): 2. Muelleria 7, 317–32.Google Scholar
  48. McLean, N. and Porter, D. (1987) Lesions produced by a thraustochytrid in Tritonia diomedea (Mollusca: Gastropoda: Nudibranchia) J. Invert. Pathol. 39, 223–5.Google Scholar
  49. Mason, E. (1928) Note on the presence of mycorrhiza in the roots of salt marsh plants. New Phytol. 27, 193–5.Google Scholar
  50. Maxwell, G.S. (1968) Pathogenicity and salinity tolerance of Phytophthora sp. isolated from Avicennia resinifera (Forst F.) -- some initial investigations. Tane 14, 13–23.Google Scholar
  51. Mohankumar, V. and Mahadevan, A. (1986) Survey of vesicular-arbuscular mycorrhizae in mangrove vegetation. Curr. Sci. 55, 936.Google Scholar
  52. Molina, F.I. (1986) Petersenia pollagaster (oomycetes), an invasive fungal pathogen of Chondrus crispus (Rhodophyceae) In The Biology of Marine Fungi (S.T. Moss, ed), pp. 165–76. London: Cambridge University Press.Google Scholar
  53. Mouzouras, R. (1989) Soft rot decay of wood by marine fungi. J. Inst. Wood. Sci. 11, 193–201.Google Scholar
  54. Mouzouras, R., Jones, E.B.G., Venkatasamy, R. and Moss, S.T. (1986) Decay of wood by microorganisms in aquatic habitats. Rec. Ann. Conv. B.W.P.A. 1986: 1–18.Google Scholar
  55. Moss, S.T. (ed.) (1986) The Biology of Marine Fungi. Cambridge: Cambridge University Press.Google Scholar
  56. Muehlstein, L.K., Porter, D. and Short, F.T. (1988) Labyrinthula sp., a marine slime mold producing the symptoms of wasting disease in eelgrass, Zostera marina. Mar. Biol 99, 464–72.Google Scholar
  57. Nag Raj, T.R. and Ponnapa, K.M. (1968) Urohendersonia pongamiae sp. nov. Curr Sci. 37, 416–7.Google Scholar
  58. Nakagiri, A., Newell, S.Y., Ito, T. and Tan, T.K. (1996) Biodiversity and ecology of the oomycetous fungus, Halophytophthora. In Biodiversity and the Dynamics of Ecosystems. [DIWPA series. Vol.1] (I.M. Turner, C.H. Diong, S.S.L. Lim, and P.K.L. Ng, eds), pp. 273–80. Tokyo: International Network for DIVERSITAS in Western Pacific and Asia.Google Scholar
  59. Nakagiri, A., Okane, I., Ito, T. and Katumoto, K. (1997) Lanceispora amphibia gen et sp. nov., a new amphisphaeriaceous ascomycete inhabiting senescent and fallen leaves of mangrove. Mycoscience 38, 207–13.Google Scholar
  60. Nakagiri, A., Tokumasu, S., Araki, H., Koreeda, S. and Tubaki, K. (1989) Succession of fungi in decomposing mangrove leaves in Japan. In Recent Advances in Microbial Ecology (T. Hattori, Y. Ishida, Y. Maruyama, R. Morita and A. Uchida (eds.), pp. 297–301. Tokyo: Japan Scientific Society Press.Google Scholar
  61. Newell, S.Y. (1976) Mangrove fungi: The succession in the mycoflora of red mangrove (Rhizophora mangle L.) seedlings. In: Recent Advances in Aquatic Mycology, (E.B.G. Jones, ed.), pp. 51–91. London, Elek Science.Google Scholar
  62. Newell, S.Y. (1984) Bacterial and fungal productivity in the marine environment: a contrastive overview. Colloque Int. Cent. Natn. Rech. Scient. (Marseille) 331, 133–9.Google Scholar
  63. Newell, S.Y. (1992) Estimating fungal biomass and productivity in decomposing litter. In The Fungal Community, 2 edition (G.C. Carroll and D.T. Wicklow, eds), pp. 521–61. New York: Marcel Dekker.Google Scholar
  64. Newell, S.Y. (1993) Decomposition of shoots of a salt-marsh grass. Methodology and dynamics of microbial assemblages. Adv. Microb. Ecol. 13, 301–26.Google Scholar
  65. Newell, S.Y. (1994) Ecomethology for organoosmotrophs: Prokaryotic unicellular versus eukaryotic mycelial. Microb. Ecol. 28, 151–7.Google Scholar
  66. Newell, S.Y. (1996) Established and potential impacts of eukaryotic mycelial decomposers in marine/terrestrial ecotones. J. Exp. Mar. Biol. Ecol. 200, 187–206.Google Scholar
  67. Newell S.Y. and Fell, J. W. (1992) Ergosterol content of living and submerged, decaying leaves and twigs of red mangrove. Can. J. Microbiol. 38, 979–82.Google Scholar
  68. Newell, S.Y. and Fell, J.W. (1994) Parallel testing of media for measuring frequencies of occurrence for Halophytophthora spp. (oomycetes) from decomposing mangrove leaves. Can. J. Microbiol. 40, 251–6.Google Scholar
  69. Newell, S.Y. and Fell, J.W. (1995) Do Halophythopthoras (marine Pythiaceae) rapidly occupy fallen leaves by intraleaf mycelial growth? Can J Bot. 73, 761–5.Google Scholar
  70. Newell, S.Y. and Fell, J.W. (1997) Competition among mangrove oomycetes, and between oomycetes and other microbes. Aquat. Microbial Ecol. 12, 21–8.Google Scholar
  71. Newell, S.Y., Porter, D. and Lingle, W.L. (1995) Lignocellulolysis by ascomycetes (fungi) of a saltmarsh grass (smooth cordgrass). Microsc. Res. Techn. 33, 32–46.Google Scholar
  72. Nicolson, T. H. (1960) Mycorrhizae in the Gramineae. II. Development in different habitats, particularly sand dunes. Trans. Brit. Mycol. Soc. 43, 132–45.Google Scholar
  73. Noga, E.J. (1990) A synopsis of mycotic diseases of marine fishes and invertebrates. Pathology in Marine Science, pp. 143–59. New York: Academic Press.Google Scholar
  74. Norton, J.H., Thomas, A.D. and Barker, J.R. (1994) Fungal infection in the cultured juvenile boring clam Tridacna crocea. J. Invert. Pathol. 64, 273–5.Google Scholar
  75. Pegg, K.G., Gillespie, N.C. and Forsberg, L.I. (1980) Phytophthora spp. associated with mangrove death in central coastal Queensland, Australas. Pl. Pathol. 9, 6–7.Google Scholar
  76. Pointing, S.B., Vrijmoed, L.L.P. and Jones, E.B.G. (1998) A qualitative assessment of lignocellulose degrading enzyme activity in marine fungi. Bot. Mar. 41, 293–298.Google Scholar
  77. Polglase, J.L. (1980) A preliminary report on the thraustochytrid(s) and labyrinthulid(s) associated with a pathological condition in the lesser octopus Eledone cirrhosa. Bot. Mar. 23, 699–706.Google Scholar
  78. Polglase, J.L., Alderman, D.J. and Richards, R.H. (1986) Aspects of the progress of mycotic infections in marine animals. In The Biology of Marine Fungi (S.T. Moss, ed.), pp. 155–64. London: Cambridge University Press.Google Scholar
  79. Porter, D. (1986) Mycoses of marine organisms: an overview. In The Biology of Marine Fungi (S.T. Moss, ed.), pp. 141–153. London: Cambridge University Press.Google Scholar
  80. Raghukumar, C. (1986) Thraustochytrid fungi associated with marine algae. Ind. J. Mar. Sci. 15, 121–2.Google Scholar
  81. Raghukumar, C. (1987a) Fungal parasite of the green alga Chaetomorpha media. Dis. Aquat. Org. 3, 147–50.Google Scholar
  82. Raghukumar, C. (1987b) Fungal parasites of marine algae from Mandapam (South India). Dis. Aquat. Org. 3, 137–45.Google Scholar
  83. Raghukumar, C. and Raghukumar, S. (1991) Fungal invasion of massive corals. Mar. Ecol. 12, 251–60.Google Scholar
  84. Raghukumar, C., Raghukumar, S., Chinaraj, A., Chandramohan, D., D'Souza, T.M. and Reddy, C.A. (1994) Laccase and other lignocellulose modifying enzymes of marine fungi isolated form the coast of India. Bot. Mar. 35, 512–27.Google Scholar
  85. Raghukumar, S., Sharma, S., Raghukumar, C., Sathe-Pathak, V. and Chandramohan, D. (1995) Thraustochytrid and fungal component of marine detritus. IV. Laboratory studies on decomposition of leaves of the mangrove Rhizophora apiculata Blume. J. Exp. Mar. Biol. Ecol. 183, 113–31.Google Scholar
  86. Rand, T.G. (1996) Fungal diseases of fish and shell fish. In The Mycota. Vol. VI. Human and Animal Relationships (K. Esser and P.A. Lemke, eds), pp. 297–313. Berlin: Springer-VerlagGoogle Scholar
  87. Rheinheimer, G. (ed.) (1992) Aquatic Microbiology. 4th edition. Chichester: John Wiley and Sons.Google Scholar
  88. Rohrmann, S. and Molitoris, H.P. (1992) Screening for wood decay enzymes in marine fungi. Can. J. Bot. 70, 2116–23.Google Scholar
  89. Rozema, J., Aep, W., van Diggelen, J., van Esbroek, M., Broekman, R. and Punte, H. (1986) Occurrence and ecological significance of vesicular-arbuscular mycorrhiza in the salt marsh environment. Acta Bot. Neerl. 35, 457–62.Google Scholar
  90. Santesson, R. (1939) Amphibious pyrenolichens. I. Ark. Bot. 29A, 1–68.Google Scholar
  91. Scherrer, P. and Miller, G. (1989) Biodegradation of crude oil in an experimentally polluted peaty mangrove soil. Mar. Poll. Bull. 20, 430–32.Google Scholar
  92. Schnepf, E. and Deichgrber, G. (1978) Development and ultrastructure of marine, parasitic oomycete, Lagenisma coscinodisci (Lagenidiales): the infection. Arch. Microbiol. 116, 133–9.Google Scholar
  93. Singh, A.P., Nilsson, T. and Daniel, G. (1990) Bacterial attack of Pinus sylvestris wood under near araerobic conditions. J. Inst. Wood Sci. 11, 237–49.Google Scholar
  94. Singh, N. and Steinke, T.D. (1992) Colonization of leaves of Bruguiera gymnorrhiza (Rhizophor-aceae) by fungi, and in vitro cellulolytic activity of the isolates. SA J. Bot. 58, 525–9.Google Scholar
  95. Smolowitz, R.M., Bullis, R.A. and Abt, D.A. (1992) Mycotic bronchitis in the laboratory-maintained hermit crabs (Pagurus spp.). J. Crust. Biol. 12, 161–8.Google Scholar
  96. Stewart, J.E. (1984) Lobster diseases. Helogander Meeresuntersuchungen 37, 243–54.Google Scholar
  97. Sutherland, J.B., Crawford, D.L. and Speedie, M.K. (1982) Decomposition of 14C-labelled maple and spruce lignin by marine fungi. Mycologia 74, 511–3.Google Scholar
  98. Ulken, A. (1984) The fungi of the mangle ecosystem. In Hydrobiology of the Mangle (F.D. Por and I. Dor, eds), pp. 27–33. The Hague: W Junk.Google Scholar
  99. van der Meer, J.P. and Pueschel, C.M. (1985) Petersenia palmariae n.sp. (Oomycetes): a pathogenic parasite of red alga Palmaria mollis (Rhodophyceae). Can. J. Bot. 63, 404–8.Google Scholar
  100. Vrijmoed, L.L.P. and Tam. N.F.Y. (1990) Fungi associated with leaves of Kandelia candel (L.) Druce in litter bags on the mangrove floor of a small subtropical mangrove community in Hong Kong. Bull. Mar. Sci. 47, 261–2.Google Scholar
  101. Wada, S., Nakamura, K., and Hatai, K. (1995) First case of Ochroconis humicola infection in cultured fish in Japan. Fish Pathol. 30, 125–6.Google Scholar
  102. West, A.W. (1988) Specimen preparation, stain type, and extraction and observation procedures as factors in the estimation of soil mycelial lengths and volumes by light microscopy. Biol. Fertil. Soils 7, 88–94.Google Scholar
  103. Weste, G., Cahill, D. and Stamps, D.J. (1982) Mangrove dieback in North Queensland, Australia. Trans. Brit. Mycol. Soc. 79, 165–7.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Kevin D. Hyde
    • 1
  • E.B. Gareth Jones
    • 2
  • Eduardo Leaño
    • 2
  • Stephen B. Pointing
    • 2
  • Asha D. Poonyth
    • 1
  • Lilian L.P. Vrijmoed
  1. 1.Department of Ecology and BiodiversityThe University of Hong KongPokfulam RoadHong Kong
  2. 2.Department of Biology and ChemistryThe City University of Hong KongKowloon Tong, KowloonHong Kong

Personalised recommendations